SCU-T-78-002 c. 2

# Marine Studies of San Pedro Bay, California

# PART 15

THE IMPACT OF THE SANSINENA EXPLOSION AND BUNKERS C SPILL ON THE MARINE ENVIRONMENT OF OUTER LOS ANGELES HARBOR Sea Grant Depository



Edited by Dorothy F. Soule and Mikihiko Oguri

Published by Harbors Environmental Projects Allan Hancock Foundation and The Office of Sea Grant Programs

Institute of Marine and Coastal Studies University of Southern California Los Angeles, California 90007

December, 1978

This volume incorporates the final report to the Union Oil Company and to the USC-Sea Grant Program

The research was funded by a Contract with the Union Oil Company of California with assistance from the USC-Sea Grant Emergency Fund and Harbors Environmental Projects

of the

Institute for Marine and Coastal Studies

The Principal Investigator

Marine Studies of San Pedro Bay, California, Part 15

# ERRATUM

Page 66, second paragraph should read:

Weighted discriminant analysis showed the interactions of the parameters and gives coefficients of separate determination for each parameter. Thus the higher the coefficient for a parameter the more important that parameter is as a variable interacting with all the other biotic and abiotic variables. Bar graph data, presented at the end of this section, show the separate parameters (Figures 58-67), but they will generally not show the same ranking of means and extremes as the weighted means used to calculate the coefficients. Weighting compensates for patchiness and statistical errors in sampling, population dominance and the like. Marine Studies of San Pedro Bay, California Part 15

- -

\_ \_ ..

# THE IMPACT OF THE <u>SANSINENA</u> EXPLOSION AND BUNKER C SPILL ON THE MARINE ENVIRONMENT OF OUTER LOS ANGELES HARBOR

Final Report to the Union Oil Company and to USC-Sea Grant Program

Edited by Dorothy F. Soule and Mikihiko Oguri

Published by Harbors Environmental Projects Allan Hancock Foundation and The Office of Sea Grant Programs

Institute for Marine and Coastal Studies University of Southern California Los Angeles, California 90007

December, 1978



# TABLE OF CONTENTS

----

····· ·· ·· ·

.. \_\_\_\_

· <u>---</u> · · ·

-

| SUMMARY OF IMPACTS                                                               | v |
|----------------------------------------------------------------------------------|---|
| I. INTRODUCTION                                                                  | 2 |
| The <u>Sansinena</u> Incident                                                    | 2 |
| Prior Baseline Studies                                                           | 4 |
| Analytical Methods                                                               | 4 |
| II. PHYSICAL EFFECTS OF THE SANSINENA BUNKER C SPILL                             | 6 |
| Oil and Grease Distribution                                                      | 6 |
| Final Survey of <u>Sansinena</u> Oil                                             | 9 |
| Hydrocarbon Analysis                                                             | 1 |
| Experimental Hydrocarbon Study                                                   | 2 |
| Physical Parameters 1                                                            | 2 |
| III. BIOLOGICAL EFFECTS OF THE SANSINENA INCIDENT                                | 9 |
| A. Primary Productivity and Nutrients                                            | 9 |
| B. Benthic Biology                                                               | 5 |
| C. Zooplankton Investigations                                                    | 5 |
| D. Meroplankton                                                                  | 7 |
| E. Breakwater Biota                                                              | 4 |
| F. Fish Fauna                                                                    | 4 |
| G. The Cabrillo Beach Area                                                       | 3 |
| H. Diver Surveys                                                                 | 5 |
| (Literature Cited)                                                               | 4 |
| IV. OTHER EFFECTS OF TANKER INCIDENTS                                            | 7 |
| A. Preliminary Report on the Physical and Sensory                                |   |
| Effects of the Explosion of the Tanker <u>Sansinena</u> ,<br>by John W. McDonald | 7 |
| B. A Review of the Effects of Spilled Bunker C Fuel                              |   |
| on Marine Environments, by Mary K. Wicksten                                      | 4 |
| A Review, by K. Sherman and J.B. Pearce                                          | 0 |
|                                                                                  |   |

Cover photo, courtesy of Los Angeles Fire Department





Stereogram (vertical profile exaggerated). Courtesy of John W. McDonald.

#### SUMMARY OF IMPACTS

### PHYSICAL EFFECTS OF THE SANSINENA BUNKER C SPILL

1. The residual oil in the tanker <u>Sansinena</u> spread over the southwest basin of outer Los Angeles Harbor, coating the San Pedro breakwater and inner Cabrillo Beach.

2. Some of the Bunker C fuel on the surface burned and residue sank, while ruptured lines beneath the dock flowed for several days, creating a deep pool of Bunker C fuel on the bottom. The fuel spread in the ship channel and surfaced through the water column as blobs and slicks.

3. Concentrations in the water column and nearby sediments decreased through the spring and summer but increased in the fall when pile driving and storms uncovered and stirred up bottom residues. An estimated 3000-4500 barrels that could not be salvaged remained in the outer harbor area one year later.

### BIOLOGICAL EFFECTS OF THE SANSINENA INCIDENT

#### A. Phytoplankton Productivity

1. The data indicate that a distinct stimulation in the activity of the phytoplankton occurred immediately following the explosion and oil spill. There was not a concurrent increase in population size, indicating that the activity was possibly related to the trauma of the incident rather than to the presence of oil in the water.

2. An unusual red tide bloom occurred in the area in July, while phytoplankton was inhibited in November rather than stimulated. Both conditions may have been due to natural events, but a return to high oil levels in the water in November may have been inhibitory.

3. Nutrient levels in the area also peaked above nearby ambient levels in the two weeks following the spill. In January, nitrite rose and then dropped below ambient, while nitrate remained high at the spill site but dropped nearby; ammonia rose above ambient and remained high throughout the early spring.

### B. Benthic Biology

1. Weighted discriminant computer analysis indicated that December 1976 distribution patterns (site groupings) of benthic species were strongly influenced by salinity, pH and turbidity, but less so by oil and grease in the sediments and dissolved oxygen in areas not directly beneath the oil pool.

2. In January 1977 the benthic patterns appeared to be much more strongly influenced by oil and grease, although counts per square meter had not dropped radically.

3. By April, instead of the spring increases normally expected, populations dropped radically, even though oil and grease levels had also dropped greatly. It should be noted that more than one month elapsed before large mortalities occurred. Bioassay tests for toxicity generally are not carried out for the 2-4 months that would have simulated this cumulative impact.

4. By November, numbers of species or other taxa were near normal, but population counts did not approach those of the 1974 survey. Analysis suggested that oil and grease levels were no longer strongly influencing distribution in spite of the fact that reconstruction activities at the dock and storms had increased levels in the water column and surface sediments greatly. This does not mean, however, that there were no further influences from the oil residues, but that other factors such as temperature, dissolved oxygen and salinity played important roles in species distribution and

# C. Zooplankton Investigations

1. Species diversity remained high for several weeks after the explosion, with increases in copepod and cladoceran taxa, but total members per cubic meter were reduced. *Paracalanus parvus* and *Acartia tonsa* showed increases in January.

2. In April numbers of species dropped, but counts rose greatly in the <u>Sansinena</u> area, although they did not rise outside the area. Literature surveyed suggested that copepods may feed on oil without harm.

3. Data analysis showed that oil and grease levels far outweighed other parameters in December-January in determining species distribution (site groupings). Phytoplankton parameters were next in importance.

4. By April phytoplankton parameters, dissolved oxygen, salinity and pH were major determinants. Oil and grease levels were also important even though levels were low. July data analysis again showed phytoplankton parameters to be the most important parameters. Mid- and bottom water oil and grease levels had lesser effect than did surface levels.

5. November distribution patterns (site groupings) were determined largely by phytoplankton parameters and temperature. In spite of large increases in oil and grease levels, those parameters did not appear to define the site groups. The hypothesis was advanced that the residual oil was no longer toxic to zooplankton or to benthic organisms.

# D. Meroplankton

1. The number of species or other taxa did not show the usual spring increase near the <u>Sansinena</u>; increases did occur by June and July, however.

2. Numbers of species and individuals were similar in the site area and outside it in February, but by April the numbers were nearly double away from the site as compared with the highest in the site area. That study was terminated in July.

## E. Breakwater Biota

1. The breakwater rocks were heavily coated with tar at the higher high tide marks. Animal species abundance was generally better in the January survey than it was in March, the reverse of the usual pattern, with some recovery by June, 1977. Algal species returned earlier, with increases in March, which may in turn have provided food for the subsequent animal recolonization. A kelp bed built on the breakwater in June subsequently attracted good diverse populations to the area.

\_\_\_\_\_

# F. Fish Fauna

1. No differences were observed in limited surveys of fish populations that could be attributed to the spill. Fish were recruited to the breakwater kelp bed beginning in June 1977 and a resident population was apparently established without regard to oil in the area.

## G. The Cabrillo Beach Area

1. The most serious impact on the beach community may have resulted from excessive sand removal in cleaning up the initial oil spill. Animals that were physically coated with the tarry material died. Intertidal and subtidal rocks were coated and killed barnacles, limpets, mussels and the algae-eating isopod Ligia. Ligia did not return. The beach and cobble area were barren until March, with gradual increases in species through November-December of 1977.

2. No dead birds were observed by the research team, although a few were reported by word of mouth, and some gulls had tarred feet. A variety of birds continued to feed in the shallows throughout the study.

#### H. Diver Surveys

1. Impact on invertebrates covered by the oil was total. Outside the area covered by the residual oil those benthic invertebrates that could be observed by divers did not seem to be affected by the spill. Cerianthid anemones, sea pens, geoducks and *Cancer* crabs were found adjacent to globs of oil on the bottom throughout the study. Poor visibility in the water in the spring precluded accurate comparative counts. The area in the ship channel was frequently disturbed by ship traffic prior to the spill, so would have been depauperate initially.

Dorothy F. Soule, Ph.D., Principal Investigator

# HARBORS ENVIRONMENTAL PROJECTS STAFF AND ASSOCIATES

## 1977-1978

# MANAGEMENT BIOLOGISTS

- Director: Dorothy F. Soule, Ph.D., Senior Research Scientist, Institute for Marine and Coastal Studies, Adjunct Professor of Environmental Engineering; Marine Biology.
- Associate Director: Mikihiko Oguri, M.S., Research Scientist, Institute for Marine and Coastal Studies; Phytoplankton Ecology, Marine Biology.
- Associate Director: John D. Soule, Ph.D., Professor of Histology and Biology, USC, and Research Associate, Allan Hancock Foundation; Histology, Pathology, Marine Invertebrates.

# PRINCIPAL INVESTIGATORS/CONSULTANTS

- B. C. Abbott, Ph.D. Director, Allan Hancock Foundation; Chairman, Department of Biological Sciences. Phytoplankton, red tide toxins, biostimulation. (Ph.D. Cambridge Univ.).
- K. Y. Chen, Ph.D. Chairman, Environmental Engineering, USC. Trace metal chemistry, amplification, sanitation engineering. (Ph.D. Harvard Univ.).
- John Dawson, M.A. Research Scientist, Harbors Environmental Projects, USC. Zooplankton fauna, ecology. (M.A. USC).
- Ethan D. Churchill, Ph.D. Associate for Terrestrial Botany.
- C. Robert Feldmeth, Ph.D. Associate Professor, Biology, Claremont Colleges, and Research Scientist, Harbors Environmental Projects, USC. Marine ecology (Ph.D. Univ. Toronto).
- Patricia Kremer, Ph.D. Research Scientist, Harbors Environmental Projects, USC. Estuarine ecology, computer modelling, oxygen budgets. (Ph.D. Rhode Island).
- J. J. Lee, Ph.D. Associate Professor, Civil Engineering, USC. Ocean Engineering, Ocean engineering, hydrodynamics, modelling, computer. (Ph.D. Cal Tech).
- John McDonald, M.A. Lecturer, Geography, USC. Computer mapping, sociogeography. (U.S. Army and M.A. Cal State Northridge).
- Mikihiko Oguri, M.S. Associate Director, Harbors Environmental Projects, IMCS-USC. Phytoplankton, productivity, physical water quality, radioisotopes. (Univ. Hawaii).
- Dennis Power, Ph.D. Director, Santa Barbara Museum of Natural History. Associate for Ornithology.
- Donald J. Reish, Ph.D. Professor of Biological Sciences, Calif. State Univ. Long Beach, and Research Associate, Harbors Environmental Projects, USC. Benthic ecology, bioassay. (Ph.D. USC).

Robert Smith, Ph.D. Research Scientist, Harbors Environmental Projects, USC. Benthic ecology, computer ecosystem analysis. (Also independent consultant, blm, Los Angeles City, Texas A&M, etc.). (Ph.D. USC).

- Dorothy F. Soule, Ph.D. Director, Harbors Environmental Projects and Harbor Research Laboratory, Senior Research Scientist, IMCS-USC, and Allan Hancock Foundation. Invertebrates, ecology. (Ph.D., Claremont Grad. School).
- John D. Soule, Ph.D. Professor of Histology and Biology, USC, and Research Associate, Allan Hancock Foundation. Histology, pathology, marine invertebrates. (Ph.D. USC).
- John S. Stephens, Jr., Ph.D. James Irvine Professor of Biology, Occidental College and Research Associate, Harbors Environmental Projects, USC. Ichthyology, marine ecology. (Ph.D. UCLA).
- Cornelius W. Sullivan, Ph.D. Assistant Professor, Biological Sciences, USC. Marine microbiology, biogeochemistry, phytoplankton ecology.
- Gary Troyer, M.S. Associate Professor, Claremont Colleges, and Research Consultant, Harbors Environmental Projects, USC. Ecological assessment, diver surveys. (M.S. Univ. Redlands).
- Louis C. Wheeler, Ph.D. Professor Emeritus, USC, Associate for Terrestrial Botany.
- Mary Wicksten, Ph.D. Research Scientist, Harbors Environmental Projects, USC. Marine ecology, crustacean biology, literature surveys. (Ph.D. USC).
- Charles Woodhouse, Ph.D. Marine Mammalogist, Santa Barbara Museum of Natural History. Consultant.

#### ASSOCIATE INVESTIGATORS

- Kent Adams, M.S. Research Assistant, Harbors Environmental Projects, USC. Bioassay.
- Scott Brady, Ph.D. Research Assistant, Harbors Environmental Projects, USC. Biochemistry.
- Margaret Callahan, Ph.D. (cand.). Research Assistant, Harbors Environmental Projects, USC. Zooplankton.
- Richard Hammer, M.S., Fh.D. (cand.). Research Assistant, Harbors Environmental Projects, USC. Zooplankton, crustacean biology. (M.S. Texas A&M).
- Clyde Henry, Ph.D.(cand.). Research Assistant, Harbors Environmental Projects, USC. Benthic ecology, computer ecosystems analysis. (M.A., Texas A&M).
- Anne L. Holmquist, Ph.D.(cand.) Research Scientist, Harbors Environmental Projects, USC. Phytoplankton productivity.

- David Krempin, Ph.D. (cand.). Research Assistant, Harbors Environmental Projects. USC. Radioisotopes, microbiology.
- Larry Randall McGlade, M.S. Research Assistant, Harbors Environmental Projects, USC. (M.S., Cal.St.U.Long Beach).
- Sarah McGrath, Ph.D.(cand.). Research Assistant, Harbors Environmental Projects, USC. Radioisotopes, microbiology.
- Gregory Morey-Gaines, Ph.D. (cand.). Research Assistant, Biological Sciences, USC. Phytoplankton, biostimulation, food webs.
- T.J. Mueller, Ph.D. (cand.) Consultant in statistical analysis, USC.
- Marianne Ninos, Ph.D. (cand.) Research Assistant, ichthyoplankton, HEP.
- Robert Osborn, M.S. Research Assistant, Harbors Environmental Projects, USC. Benthic fauna, polychaete biology. (M.S., Cal.St.U., Long Beach).
- Scott Ralston, Ph.D.(cand.). Research Assistant, Harbors Environmental Projects, USC. Ichthyology, developmental biology.
- Timothy Sharp, M.S. Research Technician, Harbors Environmental Projects, USC. Ichthyology, bioassay, ecology.
- Sarah Swank, Ph.D.(cand.). Research Assistant, Harbors Environmental Projects, USC. Ichthyology, bioassay, ecology.

Donna Eto

Gordon Taylor, Ph.D. (cand.). Research Assiatant, Harbors Environmental Projects, USC.

TECHNICAL SUPPORT STAFF

| Bruce Adams            |
|------------------------|
| Charles Robert Bostick |
| Deborah Bright         |
| James Bryan            |
| Clairessa Cantrell     |
| Dan Dabelstein         |
| John Dmohowski         |
| James Dorsey           |
| Frank Edmands          |
| Donna Elias            |
| Jan Ellison            |

## ADMINISTRATIVE STAFF

Lona Proffitt Ruth Steiger

OTHER CONSULTANTS

Donna Cooksey Kevin Green Kirk M. Herring Ronald Hill Christine Jado<u>mska</u> Mark James

- Kevin Green Kirk Herring Ronald Hill Melanie Hunter Christine Jadomska Emily Kelley Katherine Kritchfield Steve Kurtz Joan Leventhal Catherine Link
- Maria Lorente Alawia Mahgoub Vanessa McGlade Steve Petrich Paul Pyle Elizabeth Rose Rosanne Ruse David Schomisch James Shubsda Joanne Woodcock

Rick James Thomas McDonnell Mark McMahan Steve Petrich Jill D. Sadler Michelle Smith Carol Stepien



Helicopter view of the <u>Sansinena</u> incident, December 1976 Note oil slicks and boom in upper center; bulk loading facility to lower left, boat yard to lower right.



Helicopter view of the <u>Sansinena</u> at Berth 46 following explosion, fire and Bunker C spill, December 1976. THE IMPACT OF THE <u>SANSINENA</u> EXPLOSION AND BUNKER C SPILL ON THE MARINE ENVIRONMENT OF OUTER LOS ANGELES HARBOR

by

# Dorothy F. Soule, Mikihiko Oguri, John D. Soule

Harbors Environmental Projects Institute for Marine and Coastal Studies Allan Hancock Foundation 139 University of Southern California Los Angeles, California 90007

ABSTRACT. On December 17, 1976 the 70,000 ton tanker <u>Sansinena</u> exploded and burned in Los Angeles Harbor while refueling. The explosion and fire resulted in an estimated spill of 32,000 barrels of Bunker C fuel. Harbors Environmental Projects initiated studies on December 20 on the spread of the oil and its impact on biology and water quality at 24 stations. Prior studies by HEP at the site provided a baseline from 1972 to December 1976. Intertidal areas evidenced the greatest impact. Benthic population decreased greatly through April but returned to normal by November 1, 1977. Benthic organisms correlated best with oil and grease concentrations in bottom waters rather than in surface sediments, until November when hydrocarbons rose but no longer were correlated (toxic). Phytoplankton productivity dropped during the first two weeks but appeared to be recovered by January 1977. Zooplankton were affected by oil and grease in the water in April and July, but did not appear to be closely related in November 1977.

ACKNOWLEDGMENTS. Investigations were funded in part by a contract between Harbors Environmental Projects and the Union Oil Company, with assistance from rapid-response funds of the USC Sea Grant Program and HEP, both of the Institute for Marine and Coastal Studies, University of Southern California. Portions of this study are being published by the American Institute of Biological Science as Proceedings of the Conference on The Assessment of Ecological Impacts of Oil Spills, at Keystone, Colorado, June 14-17, 1978.

# I. INTRODUCTION

# The Sansinena Incident

The Sansinena, an 850 foot, 70,000 ton tanker of Liberian registry under charter to the Union Oil Company, exploded and burned at the dock at Berth 46 in outer Los Angeles Harbor at 19:40 hours on December 17, 1976 (Figure 1). The ship had apparently completed unloading 500,000 barrels of Indonesian light crude oil and had taken on 22,000 barrels of Bunker C fuel while ballasting under low clouds and foggy conditions, when an unknown incident caused the entire midship section to explode. The superstructure was hurled high into the air and crashed on the dock, behind the chicksans, rupturing valves and lines. An unknown quantity of crude and Bunker C flowed into the harbor beneath the dock and wreckage This caused intermittent backfiring on the dock, for several days. blazing up periodically (U.S. Coast Guard, 1977) after containment. An estimated 400 barrels of crude which had been residual in the cargo holds burned, along with that which leaked from the dock pipelines (Los Angeles Times, December 18, 1976; December 19, 1976). Flames shot 1,000 feet into the air at one time. The oil spread over the water and the Coast Guard estimated that most of the crude and some of the light fractions of Bunker C burned. However, the realization that the Bunker C would sink, especially if lighter fractions burned, caused revision of estimates of the amount of oil on the bottom. Oil that leaked under the dock and did not burn was trapped by the wreckage and pooled on the bottom 8-10 feet deep. Final estimates were a loss of from 20,000 to 32,000 barrels, but the actual amount will never be known. Diver and grab sampler surveys of the bottom led to the conclusion that globs of oil had also been blown laterally through the air and/or water to lie widely splattered across the soft silty bottom.

When the fire erupted at 19:40 hours, it was just past high tide (18:56 hours) and ebb tide would normally have carried the oil through the outer harbor and outside the breakwater. However, a southeast wind of 5-8 knots later helped to keep much of the floating oil in the southwest basin area. Low tide was at 23:54 hours on December 17, and booms were deployed by 02:00 hours on December 18. The next high tide was a maximum 6.6 feet at 6:21 hours, which tarred breakwaters, beaches and pilings up to 1.5 feet above higher high tide marks. There followed a week of extreme tides, with lows of minus 1.6 ft on December 20 and 21, and highs of 7.1 and 7.0 feet respectively, which coated intertidal areas severely.

The importance of having oil delivery systems located in well developed harbors was displayed in the <u>Sansinena</u> incident. The first Coast Guard boat arrived within five minutes, as did the first Los Angeles City Fire Department boat (U.S. Coast Guard, 1977). The powerful blast knocked in windows and doors of residences on the hillside behind Cabrillo Beach and in San Pedro, and the blast was heard more than 40 miles away. More than sixty fire units provided backup nearby in the harbor, where many oil and chemical tanks and lines are located.



# Prior Baseline Studies

Harbors Environmental Projects at the University of Southern California had carried out monitoring studies at a station (A9=U09) on the site of the explosion for six years prior to the <u>Sansinena</u> incident. The most recent samples had been taken on December 1, 1976, sixteen days before the explosion. Past biological studies in the area have included monthly primary productivity, chlorophyll *a* and assimilation ratios, microbials, zooplankton species and numbers, meroplankton/fouling fauna and sea birds. Benthic organisms were sampled quarterly; fish trawls were done occasionally. Monthly measurements also included physical parameters such as temperature, salinity, oxygen, pH and turbidity throughout the depth of the water column; nutrients were sampled at the surface. Sediment chemistry and grain size analyses were carried out. Table 1 summarizes the methods and references to techniques used.

Multivariate analysis (Smith, 1976) had been carried out on data from 1973 and 1974 (Allan Hancock Foundation, 1976) for the U.S. Army Corps of Engineers. Cooperative funding for the studies included the Corps of Engineers, the Pacific Lighting Corporation (Southern California Gas Company), the Port of Los Angeles and Port of Long Beach, the USC Sea Grant Program (NOAA, Department of Commerce), the Tuna Research Foundation, and others.

This data base appeared to offer the first opportunity to study the impact of Bunker C on the marine environment where prior conditions were known and the impact was confined to a reasonably well defined area. Although it would have been preferable to duplicate all procedures at the proposed impact stations, sufficient funds were not available. The study of the impact of the <u>Sansinena</u> on the marine environment was funded by the Union Oil Company, with assistance from the USC Sea Grant Program and Harbors Environmental Projects, of the Institute for Marine and Coastal Studies, University of Southern California. Preliminary results were presented at the Conference on Assessment of Ecological Impacts of Oil Spills, Keystone, Colorado in June 1978 (in press, American Institute of Biological Sciences).

### Analytical Methods

Hierarchical classification was used to study patterns in the biological data. Groups of biologically similar sampling sites were defined, and these groups were then compared with the patterns in the measured environmental parameters. From this, hypotheses concerning the relationships between the biota and the environment were suggested. Of particular interest, of course, was whether parameters that were possibly related to the ship incident were actually correlated with the pattern or sample-site groupings.

Specifically, flexible sorting (B=-.25) strategy (Lance and Williams, 1967) and the Bray-Curtis distance index (Bray and Curtis, 1957; Clifford and Stephenson, 1975) were used to classify the sampling sites. The species counts in each sample were first transformed by a square root and standardized by a weighted species mean (Smith, 1976). The plankton counts were transformed by a square root and standardized by a species maximum.

| ž | LINOM    | THEY ?     | HON LTON ING                                              | MLT HOD                                                                                                                             | B. QUARTERLY MONITORING                                 | CONTAK                                                               |
|---|----------|------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------|
|   | <b>ب</b> | Ablo       | tic Parameters                                            |                                                                                                                                     | 1. Abiotic Parameters                                   | ¤•tt(10hn (1957). Pelix (1969).                                      |
|   |          |            | Temperature                                               | Martek electronic remote probe.                                                                                                     | a. Sediment grain arts                                  | Gibbs (1971), AMP (1976)                                             |
|   |          |            | Salinity<br>Dissolved Oxygen<br>PH                        | AL JE INCETVALS LIZUNGS LIG<br>Walef column                                                                                         | b. Trace metals<br>pestícides                           | Amer. Publ. Health (1971); AHP<br>(1976)                             |
|   |          |            | Light transmitt <b>ance</b>                               | Nydroproducts Transmissometer,<br>remote probe with self-contained<br>light path, at lm intervalm<br>through depth                  | 2, <u>Biotic Parameters</u><br>a, Benthic Fauna         | Campbell grab or Reinecke box<br>corer, 0.5mm screen                 |
|   |          |            | Agmonia                                                   | Solorzano (1969)                                                                                                                    | b. Fish species                                         | Otter trawl, gill netting                                            |
|   |          | ÷          | Nitrite                                                   | Strickland and Parsons (1968)                                                                                                       | C. BIMEEKLY MONITORING (OUTER LC                        | S ANGELES LARBOR ONLY)                                               |
|   |          | ≟∔         | Nítrate<br>Phosphat <b>a</b>                              | Modified Strickland and Parsons<br>(AHF, 1976)                                                                                      | 1. Abiotic Parameters                                   |                                                                      |
|   |          | Blot       | tic Parameters                                            |                                                                                                                                     | a. Temperature<br>b. Salinity                           | Martek electronic remote prope,<br>at 1m intervals through the       |
|   |          |            | Biological Oxygan<br>Demand (BOD)                         | Standard Methods (American Public<br>Health, 1971) modified by Juge and                                                             | c. Dlasolved Oxygen<br>d. pif                           | water column                                                         |
|   |          |            |                                                           | Greist (1975), surface samples                                                                                                      | e. Oil and Grease                                       | Amer, Publ. Health (1971)                                            |
|   |          | ÷ ن غ      | Total Collforns<br>Fecal Colfforns<br>Fecal Streptococcum | Killepore (1972), AHF (1976)                                                                                                        | 2. <u>Biotic Parameters</u><br>a. BOD                   | Standard Methods (Amer. Publ.                                        |
|   |          | •          | Bactorial Standard<br>Plate Count                         | Auer. Soc. Microbiol. (1957)r<br>Aufr (1976)                                                                                        |                                                         | Health, 1971) modified by Juge<br>and Greist (1975), surface samples |
|   |          | <b>"</b> ; | Primary Productivity,<br>Phytoplankton                    | Modified Steeman-Neilsen (1952)<br>14C light and dark botiles,<br>standard light source incubator<br>with ambient water temperature | D. MEEKLY (ONTER LOS ANGELES-LO<br>1. Biotic Parameters | NG BEACH HARBORS) 1971-1974                                          |
|   |          | ÷          | Chiorophyll                                               | Spectrophotometry, Strickland<br>and Parsons (1968) equations                                                                       | a. Bird census                                          | Observations of resting, restring<br>feeding and transit             |
|   |          | ÷          | Assimilation ratio                                        |                                                                                                                                     |                                                         |                                                                      |
|   |          | +          | Zooplankton species                                       | 253u net surface tow with flow meter                                                                                                |                                                         |                                                                      |
|   |          | ÷          | Mater column fouling<br>fauna, larvae and<br>juveniles    | Glass microscope slides in wood<br>frame tack, plastic screened,<br>euspended at 3m depth                                           |                                                         |                                                                      |

Table I. PARAMPTERS MEASURED, LOS ANGELES-LONG BEACH MARBORS

To elucidate the relationships between the species and the sampling site groups defined in the classification, two-way coincidence tables were constructed (Kikkawa, 1968; Clifford and Stephenson, 1975). The numbers in the body of the table were 1) transformed and standardized as in the site classification analysis, and 2) converted to symbols, which are as follows:

\* > .75 to 1
+ > .5 to .75
- > .25 to .50
. > 0 to .25
blank 0

To study the relationships between the classification results and the measured environmental variables, bar graphs were constructed for each group on each variable. This showed the levels and variability of each environmental variable in the site groups. This technique has the weakness that it will not show the more complex multivariate (biotic-environmental) relationships. To test for the presence of such relationships, the groups were analyzed for correspondence with the environmental data using multiple discriminant analysis (Smith, 1976). Shannon-Weiner diversity indices were also calculated. Bar graphs presented show considerable overlap in some parameters; the multivariate method assigns coefficients to the parameters but does not imply statistical significances to them.

#### II. PHYSICAL EFFECTS OF THE SANSINENA BUNKER C SPILL

#### Oil and Grease Distribution

December, 1976. Surface sediment samples were taken in locations requested by the Union Oil Company in December, 1976 on the 22nd, 23rd, 24th, 27th, 28th, 29th and 30th of the month. Sampling was limited, and was hampered by the placement of booms and clean-up efforts. A small Snapper grab on a hand line was used from a Boston Whaler. Analysis for total oil and grease was made in the USC Environmental Engineering Laboratory, directed by Dr. K.Y. Chen.

The measurements on December 22 and 23 showed little difference from expected normal levels in the sediment except where the oil pool near the stern yielded 665,000 ppm. A high reading of 7460 ppm beyond the bow section on December 24 indicated an unexpected spread in that direction, and on December 27 increases in the fairway channel to the east were found up to 6360 ppm.

A rapid increase in oil and grease levels was shown a few days later (Figure 2) in the area sampled, where values from 5,000 to above 7,000 ppm were found, particularly in depressions on the irregular bottom over a wider area. Readings in the area closer to the booms or "sea curtain" were

actually lower than those in areas somewhat farther away. Oil and grease at the water surface ranged from 4.20 ppm at the innermost slip down to 0.10 near the main channel at the end of December (Figures 3-5).

January, 1977. In the water surface by mid-January, 1977 (Figures 6-8) some readings increased, with a high of 6.26 ppm at station UO3. Bottom water concentrations were also higher in a number of locations. A Nauman sampler was used for taking water. Computer mapping of results is courtesy of John W. McDonald of the USC Geography Department. Values were rounded to the tenth ppm for computer analysis purposes. The oil and grease levels decreased in the sediments at most stations. Figure 9 offers a comparison, bearing in mind that sampling within the oil pool itself was not carried out. Sediment samples were taken as subcores from the benthic boxcores used to sample the fauna.

<u>April, 1977</u>. The stormy weather of the spring months and salvage of bow and stern sections of the tanker apparently combined to distribute oil anew throughout the area. The bow was towed to the scrap yard on February 18, 1977 and the stern was towed away April 18, 1977. Hull debris was subsequently cleaned up at the site. Oil and grease concentrations in the water column decreased greatly (Figures 10-12). This might represent a decline in leaching of residual oil into the water column, or it might reflect the tidal phase at the time of sampling. There were tidal highs of +5.4 ft on the 17th and 18th, the latter at the time of sampling. Efforts to vacuum up the pool of oil at the site continued throughout the summer of 1977.

Sediment oil and grease levels continued to increase at station UO1, a dead end slip, and values were considerably higher at most sampling locations (Figure 13) than they had been in January. Rain fell throughout the first week of January and near the end of March; air temperature ranges were 79-90F (26-32C) during mid-January, for several days in February, and in March and April. This may also have affected the oil distribution patterns.

July, 1977. Concentrations of oil and grease in the water column (Figures 14-16) increased, however, and this could not readily be explained by tides. Inner harbor surface temperatures had risen about 1.5C, but temperatures at other stations were generally similar for April and July. Increased recreational boating could be responsible, and an upswing in bunkering operations in the outer harbor could also have increased the incidence of slicks. Certainly all of the oil cannot be attributed to the <u>Sansinena</u>. Analysis of some of the "chocolate mousse" on the beach indicated that it was probably not <u>Sansinena</u> oil (R.J. King, pers. comm.; Table 2).

Boxcore samples taken July 18, 1977 were sampled at the top, middle, and bottom of the sediment cores to obtain information on the depth of penetration of oil and grease into the sediment. Surface sediment levels had dropped from the April readings at most of the stations sampled. Penetration varied considerably, ranging from being almost uniform at station UO1 to dropping by more than 50 percent from top to bottom of the cores at UO19 and UO21 (Figures 17-19). This might be related to grain size of sediment, which tends to be finest in the innermost slip areas (AHF, 1976) and is easily transported.

November, 1977. Harbors Environmental Projects sampled the stations again on November 1, 1977 after the conclusion on the Union Oil Company study. Concentrations in the top, middle, and bottom of the water column were higher at most stations (Figures 20-22). Oil and grease measurements were also made at the top, middle, and bottom of the boxcore samples (Figures 23-25). Increases in oil and grease levels occurred at all of the stations over the July readings, except for the shallow stations nearest the breakwater.

Figures 26 and 27 plot the ranges of oil and grease concentrations in the water column and sediment over the year's study. Although tidal action may affect concentrations in the water column during sampling, the rise in November parallels the increase in the sediment, apparently due to reconstruction activities.

Reconstruction of the pier involved pile driving and barge operations at the site. In spite of the clean-up efforts to remove the pool, it was impossible to remove all of the residue.

The jelly-like blobs that were initially scattered across the bottom weathered to some extent. However, on warm days tiny blobs would rise to the surface, where they dissolved in the sunlight into flat slicks. The vibration of the pile driver also caused blobs to rise to the surface. Weather in the  $80-90^{\circ}F$  range occurred into December, 1977.

<u>April, 1978</u>. The first ship to stop at the reconstructed dock did so as a test, with the U.S. Coast Guard and Los Angeles Harbor Department as observers. Due to propeller wash, an estimated two barrels of oil rose to the surface, which was boomed off for recovery. Since the pier is a public facility some 30 years old, under lease by the Harbor Department to Union Oil, it cannot be stated unequivocally that all oil accumulated in the vicinity of the pier was a result of the <u>Sansinena</u> incident. Oil slicks are not uncommon near Navy facilities (near station UO2), around the marinas (UO3), and at the boat launching ramp at Cabrillo Beach. However, the rising of small slicks strongly indicates that Bunker C residues are still mixed in the sediments in the area. This will remain a problem, for dredging the ship channel is planned, and any dredging method will resuspend and distribute residual oil.

<u>Previous Data</u>. Previous published records for the area are limited; no analyses had been done in the areas very close to Cabrillo Beach, so it is not possible to state that higher values did not occur in sediments deposited there prior to the blast. That is unlikely, however, since the highest values found in the harbor in 1973-1974 during a survey by Harbors Environmental Projects were in the 4000 ppm range found in the inner harbor blindend slips and near an oil island in Long Beach. Values in the outer harbor vicinity of Berth 46 ranged from about 1800 to 2100 at the time (Figure 28).

More intensive sampling in Cerritos Channel (Long Beach) in March 1976 showed a few depositional areas with higher readings at the end of slips. This might be expected in areas of low flushing that have not been dredged for some years. Cerritos Channel values ranged from 660 to 4300 ppm. In Channel Two, the range was from 4370 to 6670 ppm (Figure 29). In San Pedro Channel, the oil and grease levels recorded by Chen and Lu (1974) in the Channel and around Santa Catalina Island are of interest. Many of these were higher than harbor levels, even at boxcore depths of 30 cm. Levels increased with water depth, suggesting a downward movement along with the finer sediments to the 450m contour north of the island (Figure 30).

# Final Survey of Sansinena Oil

During the year that elapsed after the <u>Sansinena</u> exploded, releasing quantities of Bunker C fuel and crude residue, cleanup operations were carried out. Information on the quantity of oil lost and the quantity recovered had not been released as of November, 1977. However, residual oil on the bottom was observed by various divers. A cooperative survey of the site was carried out on December 2, 1977, coordinated by Harbors Environmental Projects (HEP) of the University of Southern California, to determine the extent of bottom covered by the oil. Agencies which participated included the U.S. Coast Guard, U.S. Army Corps of Engineers, U.S. National Marine Fisheries Service, California Department of Fish and Game, Port of Los Angeles, Claremont Colleges, and the Institute of Marine and Coastal Studies of the University of Southern California.

Prior to the dive a series of eleven ½ inch polypropropylene braided lines 800 ft long were prepared with buoys at either end to be anchored to the bottom by weights at 100 ft intervals. Forty numbered markers were placed at 20 ft. These were deployed on the morning of the dive to serve as markers for the transects the divers would follow. A few of the buoy lines on some of the transect lines could not be secured at the point nearest the pier. This resulted in some question as to the exact orientation of the ends of lines 7 through 11, nearest the dock, although the positions of buoys, as observed from the surface, were not considered to be excessively in error (Figure 31).

Despite the problems associated with the presence of a barge being used for construction at the site, all transects were occupied as indicated on the map and the work was successfully completed. Teams of two divers each were deployed by tender boats on the odd-numbered lines while two diver teams remained on board as observers. When the first teams completed their transects, the second teams surveyed the even-numbered transects while the first teams observed. Coast Guard patrol vessels protected divers and lines by intercepting boats that ignored dive flags and red buoys. Without this protection such a large-scale dive operation would have been impossible.

The data on oil distribution in the area and, where noted, the thickness of the oil layer are presented in Table 3. No oil was observed along transects 7, 10 and 11, and no oil was found in the shallow areas around the ship channel.

The most extensive bottom coverage was in the channel adjacent to the pier, in the area formerly occupied by the ship. Except on transect 5 the oil layer in this area seldom exceeded 1 inch in thickness. In the deep channel fairway southeast of the pier site, oil was spotty along transect 8, except for a deeper patch at the end of the transect farthest from the pier. Along transect 9, oil was found at most positions from 1 through 14, up to 10 inches in thickness. Construction activities had apparently caused oil globs to surface and spread. While the area was boomed, the boom was opened for barge changes. The tidal extremes in the first 10 days of December, 1977 may also have contributed to deposition of new oil on Cabrillo Beach and the breakwater. Information on the occurrence of animals at each transect was recorded for four transects, numbers 1, 3, 5, and 7. The data are summarized in Table 4.

The occurrence of benthic animals along these transects appeared to be inversely correlated with distance from the pier and, therefore, with the presence of oil on the bottom, although this trend was least apparent in the data for transect 1. It was not clear, however, if this trend was due to the presence of fewer animals or to the poorer visibility for diver observation which was found in the waters nearest the pier. The latter was the case for transect 5, according to the dive team. (For earlier diver observations, see Feldmeth in this volume).

Calculations were made on the amount of oil remaining on the bottom on the basis of the data obtained by the divers, as shown in Table 3. Assuming an area 1000 ft. long (the length of the pier) and 400 ft. wide (half of a transect) covered uniformly with 3/4 in. of oil (actual range 0 to 10") one could estimate that nearly 4500 barrels of oil remained on the sediments. This is considerably in excess of the 100 barrels or less estimated by the salvage operator at the conclusion of vacuum pumping.

Heavy rain during the last two weeks of December and minus low tides from December 8th to the 14th and the 24th to the 26th created a great deal of sediment redistribution in the harbor. Nearby Cabrillo Beach is known to lose several feet of sand in a single storm, which may in turn be redeposited at a later date.

Ľ

L T T Attempts to resurvey the oil could not be completed until January, 1978. At that time HEP personnel made repeated dives near the end of transect 8, but were unable to find any trace of oil. Presumably the oil was buried or carried to deeper water. Department of Fish and Game personnel made 14 diver transects on January 25 and 26, 1978 in the area thought to be at the end of transect 8, where the pooled oil had been on December 2, 1977. They were unable to locate any oil and remarked that the area looked as though it had never been oiled.

The effects of residual Bunker C buried in the sediments made future harbor improvement difficult. An unnumbered drawing entitled "BERTH 45-47; MAINTENANCE DREDGING. DREDGING PLAN, PORT OF LOS ANGELES" included soundings on a 20' X 50' grid in the waters adjacent to the pier. Many of the soundings, extending southeast from the midpoint of the pier, showed depths in excess of -50 feet. That was the area that was most extensively covered with oil. It appeared that proposed maintenance dredging to -51 feet would not remove much of the oil adjacent to the pier and probably none of the deeper patches in the Deep Channel Fairway. However, hydraulic dredging would undoubtedly disturb some of the oil, possibly fouling the gear, the dredge material and the water.

## Hydrocarbon Analysis

It was not within the scope of this study to carry out hydrocarbon chemistry analysis of the Bunker C fuel as it weathered on the harbor bottom, or coated organisms or was deposited on the beach.

However, a few specimens of organisms were assembled in pooled tissue samples and gas chromatographs were run at Analytical Research Laboratories, Inc. in Monrovia, California. The samples were not all processed at the same time on the same machine, but the method gives a precision of  $\pm$  5 units on the Kovats scale, according to Zsolnay, Maynard and Gebelein (1977).

Text Table 1 shows data on the fraction recovery for the various species. The *Mytilus* collected in December 1976 had the highest aromatics content, followed by mixed crabs collected in Junc, and mixed clams and mussels collected in November. These data are compared with analysis of Bunker C residue weathered for nearly one year. The gas chromatogram of *Mytilus* appeared almost identical to the Bunker C residue pattern.

| Date                                    | Fraction<br>Recovery:<br>Sample          | Paraffin<br>Hexane | Aromatic<br>Benzene |
|-----------------------------------------|------------------------------------------|--------------------|---------------------|
| 12/31/76                                | Octopus                                  | 0.0005             | 0.0009              |
| Cabrillo Beach                          | Mussels (Mytilus)                        | 0.0014             | 0.0054              |
|                                         | Mixed clams                              | 0.0004             | 0.0007              |
|                                         | Tivela stultorum                         | 0.0003             | 0.0000              |
| 6/29/77                                 | Mixed crabs                              | 0.0006             | 0.0031              |
| Cabrillo<br>Fishing pier                | Scallops<br>(Hinnites multi-<br>rugosus) | 0.0006             | 0.0004              |
| 10/13/77                                | Dying Ulva (seaweed)                     | -0-                | -0-                 |
| Cabrillo Beach                          | Healthy $Ulv\alpha$                      | -0-                | 0.0001              |
| 11/15/77<br>Cabrillo Beach              | Mixed Clams and<br>Mussels               | 0.0007             | 0.0025              |
| 12/2/77<br>55 ft. depth<br>Ship Channel | Bunker C residue                         | 0.0021             | 0.0072              |

Text Table 1. Hydrocarbons in Invertebrate Tissues.

# Experimental Hydrocarbon Study

A supplementary field study was carried out to determine what the interaction of the sediment-water interface might be, if circulation was restricted. Three hemi-cylindrical chambers of plexiglass (Text Figure 1) with sampling ports, commonly used to determine sediment oxygen demand, were placed at three locations beside the ship channel at the Sansinena site (Figure 32).

On June 8, 1977 Dissolved Oxygen (DO) as determined by Martek remote probe analyzer, was 8.40 ppm at the surface and 6.70 ppm at 1m above the bottom when the chambers were placed on sites A (UO9), B, and C (UO6).

After 16 days the DO was measured in two chambers by taking samples through the ports for Winkler titration. Unfortunately the sampler at C had been overturned. Surface and bottom water was also sampled for Winkler titrations of dissolved oxygen, and for total oil and grease concentrations.

The dissolved oxygen occurring within the two chambers was 69% and 52% respectively of that in the water column at one meter above the bottom. This could be caused by chemical oxygen demand (COD) or biological oxygen demand (BOD) due to microbial breakdown of the organics (Text Table 2).

Oil and grease apparently was still leaching from the sediment in June as indicated by concentrations of about 2.5 times those in the water column at one meter above the bottom at sites A and B.

Repetition of this experiment in August showed almost 2 times the concentration in the chamber at site A (UO9) as in the water column, but site C showed almost no difference; B chamber had been overturned. This study was discontinued, due to the disturbances by ship traffic.

### Physical Parameters

Data on salinity, temperature, dissolved oxygen, pH and turbidity (as percent light transmittance) were collected monthly at the stations where oil and grease and biological samples were taken. Use of remote probe-packs allows for profiling the water column to note variations both horizontally and vertically. The data are presented in Appendix A.

To gain some perspective on the water column conditions during the <u>Sansinena</u> study, from December 1976 to November 1977, data from December 1975 and January 1976 can be examined (Table 5).

It is important to note that the water temperatures were considerably cooler in December 1975 (13C surface to 12.8C bottom) and January 1976 (11.7C surface to 10.2C bottom) than they were after the spill on December 29, 1976 (17C to 16.6C at A9). Temperatures rose slightly in January, 1977 (18.2C), and remained relatively warm through April. Thus the 1976-1977 thermal regime can be considered warmer than usual for the winter period. It is more normal to find temperatures of 11-13C in January, followed by a gradual spring rise. Sometimes a sharp drop will also occur in April or May due to marine overcast, and then a rise to summer temperatures follows. (See Soule and Oguri 1974 and 1976 for comparisons, and Appendix A, this volume.)

| Text Tabl                                                                                          | e 2. UNION OIL                               | - Benthic Oxyger                             | n Chamber S                | study                |                      |  |  |  |
|----------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------|----------------------|----------------------|--|--|--|
| Chambers set: 8 June 1977;<br>Retrieved: 26 June 1977; 24 August 1977<br>Location: (see Figure 32) |                                              |                                              |                            |                      |                      |  |  |  |
| CHAMBER LOCATION DISSOLVED OXYGEN* OIL AND GREASE** 6/8/77 6/26/77 8/24/77                         |                                              |                                              |                            |                      |                      |  |  |  |
| Stu                                                                                                | dy Site                                      |                                              |                            |                      |                      |  |  |  |
|                                                                                                    |                                              | 6/26/77                                      |                            |                      | :                    |  |  |  |
| А                                                                                                  | L.A. Harbor<br>Sta. A9                       | surface<br>1M above bottom<br>inside chamber | 6.50<br>6.20<br>4.30       | 0,78<br>0,88<br>1,98 | 1.21<br>0.33<br>0.65 |  |  |  |
| В                                                                                                  | Mid-point<br>between A9 and<br>Black buoy #3 | surface<br>1M above bottom<br>inside chamber | 6.60<br>6.50<br>3.40       | 1.07<br>0.48<br>1.18 |                      |  |  |  |
| С                                                                                                  | Black buoy #3                                | surface<br>1M above bottom<br>inside chamber | 6.70<br>6.30<br>no data ## | 0.45<br>0.63         | 0.67<br>0.11<br>0.12 |  |  |  |

Legend, Text Table 2.

\* Dissolved Oxygen determined by Winkler titration, except as marked # # D.O.s determined by Martek Water Quality Analyser

## Chamber found overturned



Hydrocarbons present in Cabrillo Beach "Brown Scum." Table 2.

| Normal<br>Branched  | 0.8<br>0.26                                                                                                                                                  |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pristane<br>Phytane | <br><br>                                                                                                                                                     |
| Pristane<br>Cl7     | -<br>-<br>2.13<br>0.5                                                                                                                                        |
| Total<br>Alkanes    | <1<br><1<br>3520<br>92                                                                                                                                       |
| Identification      | Water-Seawater Cabrillo Beach 4-21<br>Water-Seawater Cabrillo Beach 4-21<br>Sand-Cabrillo Beach 4-21<br>Sand-Cabrillo Beach 4-21<br>Sand-Cabrillo Beach 4-21 |

| ldentification                     | Aromatic<br>Total | Phenan-<br>threne | Naph-<br>thalene | Methyl<br>Naph-<br>thalene | Dímethyl<br>Naph-<br>thalene | Naph-<br>thalene<br>Phenan-<br>threne |
|------------------------------------|-------------------|-------------------|------------------|----------------------------|------------------------------|---------------------------------------|
| water-Seawater Cabrillo Beach 4-21 | ţ>                | ł                 | •                |                            |                              |                                       |
| Water-Seawater Cabrillo Beach 4-21 | [~                | ı                 | ,                | ı                          | ł                            | <br>  I                               |
| Sand-Cabrillo Beach 4-21           | 266               | 12                | 4. J             | 73                         | 771                          | 95 0                                  |
| Sand-Cabrillo Beach 4-21           | 0.42              | 0.02              | 0.11             | 0.19                       |                              |                                       |

\* Infinite water -µg/l soil - sediment - µg/g

| Tr.  | 1          | 2      | 3          | 4                    | 5                | 6             | 7   | 8            | 9           | 10  | 11 |
|------|------------|--------|------------|----------------------|------------------|---------------|-----|--------------|-------------|-----|----|
| 1    | +          | +      | ++         | 0                    | +++ 2            | ++ ]          | L   | +            | 0           | 1   |    |
| 2    | +          | +      | ++         | 0                    | +++ 2            | ++ 1          | L   | ÷            | +           | 1   |    |
| 3    | 5          | +      | ++         | <b>┽┽┾┾</b>          | 1 +++ 4          | ++ ]          | L   |              | +           |     |    |
| 4    | ō <b>\</b> | +      | ++         | <b>++</b> + <b>+</b> | 1 +++ 6          | ++ ]          | L,  |              | ++ 6        |     |    |
| 5    | 0          | +++ ]  | ι" Ο       | 0                    | +++ 3            | ++ ]          | ∟ / | 0            | +           |     |    |
| 6    | 0          |        | +++        | 30                   | ++ 1½            | ++ ]          |     | - × 1        | +           |     |    |
| 7    | 0          | ō      | ++         | ++++                 | 1 ++ 1½          | <u>(</u> ° –  | -   | $\Theta$     | ++ 1        |     |    |
| 8    | 0          | 0      |            | ++++                 | 1 +++ 1          | 0             |     | σ            | ++++ 6      |     |    |
| 9    | 0          | 0      | • <b>\</b> | 0                    | ++ 5             | 0             |     | - 81         | +++ 0       |     |    |
| 10   | 0          | 0      | •          | 0                    | ++ 1             | 0             |     | - († 14      | +++ 6       |     |    |
| 11   | 0          | 0      | 0          | ++++                 | 14 ++ 3          |               |     | - (†71       | т Ъ<br>0    | 1   |    |
| 12   | 0          | 0      | 0          | ++++                 | 1 ++ 3           | 0             |     | - Y I        | ں<br>14 بیر |     | -  |
| 13   | 0          | 0      | 0          | 0                    | ++ 3             |               | No  |              | +++ 0       | 7 Z | No |
| 14   | 0          | 0      | - 25       | 0                    | ++ Z             |               | ne  | 0            | Ý.          | ne  | ne |
| 15   | 0          | 0      | - <b>1</b> | +++++                | ן אדין<br>ג גע ג | l õ           |     | õ            | õ           |     |    |
| 16   | 0          | 0      | 0          | ++++                 |                  | l õ           |     | õ            | õ           |     |    |
| 1/   | 0          | 0      | - ča       |                      |                  | Ň             |     | õ            | 0           |     |    |
| 18   | 0          | 0      | E E        | $\sum_{n=1}^{n}$     |                  | õ             |     | Ō.           | 0           |     |    |
| 20   | 0          | ů<br>ů | ñ          | $\sim$               | 0                | õ             |     | •            | 0           |     |    |
| 20   | ۰<br>۵     | 0      | ů<br>ů     | ŏ                    | ō                | Ō             |     | 0            | 0           |     |    |
| . 22 | ñ          | õ      | ŏ          | õ                    | ō                | 0             |     | A            | 0           |     |    |
| 23   | õ          | ō      | ō          | 0                    | 0                | 0             |     | (+)          | 0           |     |    |
| 24   | ŏ          | ō      | Ō          | 0                    | 0                | 0             |     | ð            | 0           |     |    |
| 25   | ō          | Ô      | 0          | 0                    | 0                | 0             |     | A            | 0           |     |    |
| 26   | ō          | õ      | õ          | 0                    | 0                | 0             |     | (+)          | 0           |     |    |
| 27   | 0          | õ      | õ          | 0                    | 0                | 0             |     | σ            | 0           |     |    |
| 28   | 0          | 0      | ō          | 0                    | 0                | 0             |     | 0            | 0           |     |    |
| 29   | 0          | Ō      | Ō          | 0                    | 0                | 0             |     | 0            | 0           |     |    |
| 30   | 0          | 0      | 0          | 0                    | 0                | 0             |     | 0            | 0           |     |    |
| 31   | 0          | 0      | 0          | 0                    | 0                | 0             |     | Å.           | 0           |     |    |
| 32   | 0          | Ō      | 0          | 0                    | 0                | 0             |     | ( <u>†</u> ) | . 0         |     |    |
| 33   | 0          | 0      | 0          | 0                    | 0                | 0             |     |              | , U         |     |    |
| 34   | 0          | 0      | 0          | 0                    | 0                | U<br>^        |     | ň            | ñ           |     |    |
| 35   | 0          | 0      | Ó          | U<br>A               | 0                | ~             |     | 0            | ō           |     |    |
| 36   | 0          | 0      | 0          | U<br>A               | 0                | 0<br>0        |     |              | ŏ           |     |    |
| 37   | 0          | 0      | 0          | 0                    | n<br>n           | n<br>N        |     | - I +++      | 60          |     |    |
| 86   | 0<br>A     | 0      | 0          | 0                    | 0                | ň             |     | ++++         | 0           |     |    |
| 39   | 0          | 0      | 0          | õ                    | ō                | ŏ             |     | ++++         | - 10        |     |    |
| Leg  | end:       | 0 or r | o entry    | y - no<br>- tra      | oil repo         | rted<br>lotch |     |              | <u> </u>    | B   |    |

Table 3. Oil distribution and thickness near Berths 45-47, Port of Los Angeles. December 2, 1977.

- patch or pool - extensive cover ++++ Number following is the thickness of the oil in inches, where noted.

- globule

++

+++

| Table | 4. | Animals observed along transects 1, 3, 5 and 7. The |
|-------|----|-----------------------------------------------------|
|       |    | identities reported are those of the divers. The    |
|       |    | number following is the number of observations in   |
|       |    | the inclusive positions.                            |

| Positions |                                                                 | Transec                                                                    | t                                                                                                         |                                  |
|-----------|-----------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------|
|           | 1                                                               | 3                                                                          | 5                                                                                                         | 7                                |
| 1-10      | Cancer-1<br>Cerianthus-2<br>Mytilus-2                           | Cerianthus-1                                                               | (poor visibility)                                                                                         | Cancer~1                         |
| 11-20     | <i>Cerianthus-1<br/>Gorgonian-1<br/>Pisaster-1</i><br>Sea pen-2 | Cerianthus-4                                                               | (poor visibility)                                                                                         | Cancer-1                         |
| 21-30     | <i>Cerianthus-2</i><br>Sea pen-10                               | <i>Cerianthus-5</i><br>Piddock-7                                           | Bacterial patches-7<br>Cerianthidae-4<br>Clams-4<br>Sea pen-4                                             | Cerianthus-2<br>Panope-1         |
|           |                                                                 |                                                                            | On rock pile 27-29<br>Barred sand bass<br>Bryozoa (2 spp)<br>Lophogorgia chilensis<br>Murícea californica |                                  |
| 31-40     | Sea pen-10                                                      | <i>Cerianthus-</i> 10<br><i>Gorgonian-</i> 1<br>Ponnatalid-2<br>Piddock-10 | Barred sand bass-1<br>Cerianthidae-10<br>Clams-10<br>Sea pen-10                                           | Cerianthus- <b>4</b><br>Panope-2 |

# TABLE 5. PRE-EXPLOSION FIELD DATA

DATE: DECEMBER 09, 1975 TIME: 0959 STATION: A9 CABRILLD BEACH 525Y SSW BERTH 47

| DED.   | тн                | TEMPER | ATURE | SALINITY | D.02 | РН         | TURBIDITY      |
|--------|-------------------|--------|-------|----------|------|------------|----------------|
| METERS | / E E E T         | °C     | °F    | 0/00     | PPM  | H ION CONC | <u>% TRANS</u> |
|        | <u>// Ļ j _ j</u> |        |       |          |      |            |                |
| 00     | 0 0               | 13.00  | 55.40 | 33,80    | 2,60 | 8.44       | 72.00          |
| 01     | 3 28              | 13.00  | 55.40 | 33,75    | 2.20 | 8.45       | 73,00          |
| 01     | 5.20              | 13.00  | 55.40 | 33.75    | 2.60 | 8.49       | 78.50          |
| 07     | 0.00              | 13.00  | 55.40 | 33.75    | 2.50 | 8.55       | 81.00          |
| 0.5    | 17 12             | 13.00  | 55.40 | 33.75    | 2.70 | 8.57       | 82.00          |
| 04     | 16 40             | 12 90  | 55.22 | 33.75    | 2.80 | 8.55       | 80.00          |
| 05     | 10.40             | 12,90  | 55.22 | 33.75    | 2.80 | 8.55       | 72.00          |
| 00     | 30.00             | 12 80  | 55.04 | 33.80    | 2.50 | 8.55       | 75.00          |
| 07     | 26.24             | 12.80  | 55.04 | 33.80    | 2,60 | 8.61       | 80.00          |

DATE: JANUARY 07, 1976 TIME: 0909 STATION: A9 CABRILLO BEACH 525Y SSW BERTH 47

|        | этн    | TEMPER | ATURE | SALINITY | D.02 | PH         | TURBIDITY      |
|--------|--------|--------|-------|----------|------|------------|----------------|
|        |        | 9 C    | °F    | 0/00     | PPM  | H ION CONC | <u>%_TRANS</u> |
| METERS | SZFEEL |        |       | ¥!       |      |            |                |
| 00     | 0.0    | 11.70  | 53.06 | 32,40    | 7.60 | 7.94       | 87.50          |
| 00     | 3 28   | 11 60  | 52.88 | 32.40    | 7.40 | 7.94       | 87.50          |
| 01     | 5.20   | 11.60  | 52.52 | 32.40    | 7.30 | 7.95       | 88.00          |
| 02     | 0.00   | 11.30  | 52 34 | 32-40    | 7.40 | 7.95       | 88.00          |
| 03     | 9.04   | 10.90  | 51 44 | 32.40    | 7.30 | 7.95       | 87.50          |
| 04     | 15.12  | 10.80  | 51 08 | 32 40    | 7.30 | 7,95       | 87.50          |
| 05     | 16.40  | 10.00  | 51.00 | 32.35    | 7.30 | 7.95       | 87.50          |
| 06     | 19.68  | 10.00  | 51.00 | 22.35    | 7 30 | 7,95       | 87.50          |
| 07     | 22.96  | 10.30  | 50.54 | 32.33    | 7.30 | 7 05       | 87.50          |
| 08     | 26.24  | 10.20  | 50.30 | 32.30    | 7.50 | 7.95       | e7 50          |
| 09     | 29.52  | 10.20  | 50.36 | 32.30    | 7.30 | 7,95       | 07.00          |
| 10     | 36.80  | 10.20  | 50.36 | 32.30    | 7.30 | 7.95       | 87.50          |
| 1 1    | 36 08  | 10.20  | 50.36 | 32.30    | 7.30 | 7.95       | 87.50          |
| 12     | 39.36  | 10.20  | 50.36 | 32.30    | 7.10 | 7.93       | 87.00          |







····· FIGURE 4. DECEMBER 29-30. 1976 DIL AND GREASE (IN PPM) IN THE WATER COLUMN AT BOTTOM \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* ------17845 10.841861 BINUTES FOR MAP DECENDER 29-30, 1976 Dit and grease MURBERS EXPRESSED IN PPN - IN WATER COLUMN AT BOTTOM DATA VALUE EXTREMES ARE 0.60 1.79 ABSOLUTE VALUE RANGE APPLAING TO FACH LEVEL (\*Naxinum+ included im Highest Level Only) NENJHUN Maximum 0.0 0.01 0.01 9.10 0.50 1.00 1.50 2.00 3.00 4.00 5.00 PERCENTAGE OF TOTAL ABSOLUTE VALUE RANGE APPLYING TO EACH LEVEL 0.15 L+34 5+97 7+46 7.46 7.46 14.93 14,93 14.93 25.37 
 PREQUENCY
 DISTRIBUTION OF DATA POINT VALUES IN EACH LEVEL
 5
 6
 7
 6
 9

 STABLE
 2
 3
 4
 5
 6
 7
 6
 9

 STABLE
 3
 4
 5
 6
 7
 6
 9

 STABLE
 4
 5
 6
 7
 6
 9

 FREQ
 0
 3
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1 10 5678901

|                    | 10.00                                        | 10.00                               | 10.00             | 10-00              | 10.00                   | 10.00                                           | 10.00                              | 10-00                   | 10-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.00                                       |
|--------------------|----------------------------------------------|-------------------------------------|-------------------|--------------------|-------------------------|-------------------------------------------------|------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| FREQUENCY<br>LEVEL | OISTRIBUTION                                 | OF DATA                             | POINT VALUES      | S IN EACH          | LEVEL                   | 6                                               | 7                                  |                         | 9<br>*************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             |
| 5 Y MBOL 5         |                                              |                                     |                   |                    | *********               | *********<br>*********<br>*********<br>******** |                                    |                         | 000000000000<br>60000000000<br>6000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |
| FRED.              | 3<br>[ [ • • • • • • • • • • • • • • • • • • | 1 • • 2 • • 1<br>2 • • 1<br>2 • • 1 | 2<br>1j-+1<br>[j1 | <br> <br> ==\$==\$ | 2<br>[++5++]<br>[++5++] | 3<br>IXX6XX1<br>IXX6XX1<br>IXX6XX1<br>IXX6XX1   | 3<br>1007001<br>1007001<br>1007001 | 2<br>1000001<br>1000001 | t<br>1 4 4 7 4 4 5<br>1 4 4 7 4 5<br>1 4 4 7 4 5<br>1 4 4 7 4 5<br>1 4 4 5<br>1 4 4 5<br>1 4 5 1 4 5 1 4 | د<br>1 40+400 1<br>1 40+400 1<br>1 40+400 1 |

PERCENTAGE OF TOTAL ABSOLUTE VALUE RANGE APPLYING TO EACH LEVEL

ABSOLUTE VALUE RANGE APPLYING TO EACH LEVEL ("MAXIMUM" INCLUDED IN HIGHEST LEVEL ONLY) 6593.50 NINIMUM 325.00 L021.30 L718.00 2414.50 3111.00 3807.50 Maximum 1021.50 L718.00 2414.50 3111.00 3807.50 4504.00 4504.00 5200.50 5200-50 5697.00 5897.00

DATA VALUE EXTREMES ARE 325.00 7290.00

DECEMBER 29-30, 1976 SEDIMENT OIL AND GREASE NUMBERS EXPRESSED IN PPH SEDIMENT SUMFACE

12.024994 MINUTES FOR MAP










FIGURE 10. APPIL 18. 1977 Dil And Grease (in PPM) In the Water Column At Suppace 8----+-8784P ----------10-442758 NINUTES FOR MAP APRIL 18. 1977 OIL AND GREASE (IN PRUE IN THE WATER COLUMN ESUMFACE) DATA VALUE EXTREMES ARE 0.0 0.60 TOTAL MISSING DATA POINTS IS ABSCLUTE VALUE RANGE APPLYING TO EACH LEVEL (\*HAXIHUH\* INCLUDED IN HIGHEST LEVEL OHLY) MAN ENGIN 0.0 0.01 0.03 0.10 0-10 0.50 1.00 1-00 1.50 2.00 3-00 2.00 3.00 +.00 4.00 5-80 PERCENTAGE OF TOTAL ABSOLUTE VALUE RANGE APPLYING TO EACH LEVEL 1-34 0.15 5.97 7.40 7.46 7.46 14,93 14,93 14.93 25.37 









| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | **********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1 1 1 1 1 1                                                                                              |
| 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2212<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 77777777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ****                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | THE SEALOWSER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17777977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7777777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ***********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                            |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | belektrone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 777777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                            |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 110<br>M., 517                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1717181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ***********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11111 4                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N East                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 323140x4xpp.p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *** im 7777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | **********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1 1 1                                                                                                    |
| · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | **********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11111 :                                                                                                    |
| i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                            |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ***********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11111 !                                                                                                    |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27777 2                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11111 1                                                                                                    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · 3FET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                            |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22222 !                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | **********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ****                                                                                                       |
| i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                            |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LEEEE+++++++++++++++++++++++++++++++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                          |
| * 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                            |
| [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | i                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | i                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                            |
| I ++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | + i                                                                                                        |
| • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                          |
| [ ++++++++++ +++++++++++++++++++++++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                            |
| \$ +++++++1.10====                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ?                                                                                                          |
| [ ++++++++++ ======                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | i                                                                                                          |
| 1 +++++++++ = ====                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | **************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                            |
| [ +++++ =================                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.20-                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ···· ;                                                                                                     |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                            |
| [ 178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | eewer į                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TILFI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                            |
| T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                            |
| <b>;</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [                                                                                                          |
| i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - i                                                                                                        |
| ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ***<br>##*****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ***********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2224 7<br>24227 1                                                                                          |
| I FIGURE 15.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ••••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *****                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                            |
| 1 JULY 18+ 1977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                          |
| T IN THE WATER COLUMN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                            |
| I IN THE WATER COLUMN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = <b>jeri</b><br>U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                          |
| T IN THE WATER COLUMN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = isti<br>U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1<br>1<br>8                                                                                                |
| T IN THE ATER COLUMN<br>I AT WID-WATER<br>I<br>J<br>J<br>J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 1980<br>U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6<br> <br> <br> <br> <br> <br> <br> <br>                                                                   |
| T IN THE WATER COLUMN<br>I AT NID-WATER<br>I<br>5<br>1<br>1<br>1<br>5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 1999<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1<br>8<br>1<br>1                                                                                           |
| T IN THE WATER COLUMN<br>1 AT HID-WATER<br>1<br>5<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 299<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6<br>8<br>1<br>1<br>1<br>1                                                                                 |
| UIL AND GREAST TIME AND ALTER COLUMN<br>1 AT MID-WATER<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | () () () () () () () () () () () () () () () () () () () () () () () () () () () () ()                                                                                                                                                                                                                                                                                                                                                                                                                  | - <b>19</b> 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L<br> <br>            |
| UIL ARE WER COLUMN<br>I IN THE WATER<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>SYMAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - Nand<br>11<br>-9 6 7 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L<br>L<br>1<br>L<br>L<br>L<br>L<br>L                                                                       |
| ULL AND WEATER COLUMN<br>I IN THE WATER<br>I<br>S<br>I<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -7tt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - Nant<br>11<br>-9 8 7 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ן<br>ן<br>1<br>1<br>נ<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1           |
| UIL AND GREAST LUMM<br>I IN THE WATER<br>I<br>I<br>I<br>I<br>Symap<br>10-249101 MINUTES FOR PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 9 6 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <br>                               |
| UIA THE WER COLUMN<br>I IN THE WATER<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 84<br>94<br>95<br>98<br>98<br>98<br>98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -766                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1<br>6<br>8<br>1<br>1<br>1<br>1<br>1<br>0<br>*                                                             |
| ULL AND WERS COLUMN<br>I IN THE WATER<br>I AT MID-WATER<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -9*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <br>                  |
| ULL AND GREASE (IN PPM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -766                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ۲<br>۱<br>۱<br>۱<br>۱<br>۱<br>۱<br>۱<br>۱<br>۱<br>۱<br>۱<br>۱<br>۱<br>۱<br>۱<br>۱<br>۱<br>۱<br>۱           |
| ULL AND GREASE (IN PPM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 99 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - <b>9</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E<br>E<br>B<br>B<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C           |
| ULT 18. 1977<br>OIL AND GREASE (IN PPM)<br>IN THE WATER<br>IN THE WATER COLUMN<br>IN THE WATER COLUMN (MID-WATER)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 7 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 9 8 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5<br>6<br>8<br>9<br>1<br>1<br>1<br>1<br>1<br>8                                                             |
| UN THE WATER COLUMN (MID-WATER)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 9 6 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5<br>6<br>8<br>9<br>1<br>1<br>1<br>1<br>1<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 |
| ULL AND GREASE (IN PPM)<br>IN THE WATER COLUMN<br>J AT NID-WATER<br>I<br>SYMAP<br>ID.249101 MINUTES FOR WAP<br>JULY 18. 1977<br>OIL AND GREASE (IN PPM)<br>IN THE WATER COLUMN (MID-WATER)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 9 8 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E<br>E<br>B<br>3<br>1<br>L<br>L<br>L<br>L<br>L<br>L<br>L                                                   |
| ULY 18. 1977<br>OIL AND GREASE (IN PPM)<br>IN THE WATER<br>JULY 18. 1977<br>OIL AND GREASE (IN PPM)<br>IN THE WATER COLUMN (MID-WATER)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0-0 1-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 99 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ۲<br>۱<br>۱<br>۱<br>۱<br>۱<br>۱<br>۱<br>۱<br>۱<br>۱<br>۱<br>۱<br>۱<br>۱<br>۱<br>۱<br>۱<br>۱<br>۱           |
| UN THE UNER COLUMN<br>AT MID-WATER<br>AT MID-WATER<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | σ.0 J.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 99 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 7 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5<br>6<br>8<br>9<br>1<br>1<br>1<br>1<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 |
| UN THE WATER COLUMN<br>AT MID-WATER<br>AT MID-WA | 0.0 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 94<br>97 -<br>98 -<br>98 -<br>99 -<br>90 -<br>90 -<br>90 -<br>90 -<br>90 -<br>90 -<br>90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i                |
| IN THE WATER COLUMN<br>AT MID-WATER<br>AT MID-WATER<br>I<br>SYMAP<br>ID.249101 MINUTES FOR MAP<br>JULY 18. 1977<br>OIL AND GREASE (IN PPM)<br>IN THE WATER COLUMN (MID-WATER)<br>DATA VALUE EXTREMES ARE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0-0 L-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 99 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E<br>8<br>3<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1      |
| IN THE WATER COLUMN<br>SYMAP<br>10.249101 MINUTES FOR PAP<br>JULY 18. 1977<br>OIL AND GREASE (IN PPM)<br>IN THE WATER COLUMN (MID-WATER)<br>DATA VALUE EXTREMES ARE<br>FOTAL MISSING DATA POINTS (S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0 J.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 99 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 7 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - <b>9</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5<br>6<br>7<br>1<br>1<br>1<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 |
| IN THE WATER COLUMN<br>SYMAP<br>10.249101 MINUTES FOR PAP<br>JULY 18. 1977<br>OIL AND GREASE (IN PPM)<br>IN THE WATER COLUMN (MID-WATER)<br>QATA VALUE EXTREMES ARE<br>FOTAL MISSING DATA POINTS (5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0-0 L-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 99 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 7 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5<br>6<br>7<br>1<br>1<br>1<br>1<br>1<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 |
| IN THE WATER COLUMN<br>AT MID-WATER<br>AT MID-WATER<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0 J.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 99 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                            |
| ULLY 18. 1977<br>ULLY 18. 1977<br>OIL AND GREASE (IN PPM)<br>IN THE WATER COLUMN (MID-WATER)<br>DATA VALUE EXTREMES ARE<br>FOTAL MISSING DATA POINTS IS<br>ABSOLUTE VALUE RANGE APPLYING TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0 1.10<br>0.0 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E<br>8<br>3<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1      |
| ULY 18. 1977<br>OIL AND GREASE (IN PPM)<br>IN THE WATER<br>OIL AND GREASE (IN PPM)<br>IN THE WATER COLUMN (MID-WATER)<br>DATA VALUE EXTREMES ARE<br>FOTAL MISSING DATA POINTS IS<br>ABSOLUTE VALUE RANCE APPLYING TO<br>(MAXIMUM) INCLUDED IN M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0 1.10<br>4<br>0 EACH LEVEL<br>16HEST LEVEL ONLY)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 99 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 7 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 9 8 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5<br>6<br>7<br>1<br>1<br>1<br>1<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 |
| IN THE WATER COLUMN<br>IN THE ALUE RANCE APPLYING TH<br>IN THE WALLE RANCE APPLYING TH<br>IN THE WALLE RANCE APPLYING TH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0-0 J-10<br>0-10 J-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.00 3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -9********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.00                                                                                                       |
| IN THE WATER COLUMN (MID-WATER)<br>JULY 18. 1977<br>OIL AND GREASE (IN PPM)<br>IN THE WATER COLUMN (MID-WATER)<br>DATA VALUE EXTREMES ARE<br>TOTAL MISSING DATA POINTS IS<br>ABSOLUTE VALUE RANGE APOLYING 7-<br>('MAXIMUM' DOL 00 0-10<br>MINIMUM DOL 0-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0 J.10<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.00 1.50<br>1.50 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.00 3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - <b>9</b> • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.00<br>•,73                                                                                               |
| IN THE WATER COLUMN<br>JAY MID-WATER<br>JAY MID-WATER<br>JAY MID-WATER<br>JAY MID-WATER<br>JAY MID-WATER<br>JULY 18. 1977<br>OIL AND GREASE (IN PPM)<br>IN THE WATER COLUMN (MID-WATER)<br>DATA VALUE EXTREMES ARE<br>TOTAL MISSING DATA POINTS IS<br>ABSOLUTE VALUE RANGE APPLYING TH<br>("MAXIMUM" INCLUDED IN M<br>MINIMUM D-0 0-01<br>0-01 0-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0 1.10<br>4<br>0 EACH LEVEL<br>16HEST LEVEL ONLYJ<br>0.10 0.50<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1-00 1-50<br>1-50 2-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.00 3.00<br>3.00 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - <b>9</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.00<br>4.72                                                                                               |
| IN THE WATER COLUMN<br>IN THE ALUE RANGE APRIL VING TI<br>CATA VALUE EXTREMES ARE<br>IOTAL MISSING DATA POINTS (S<br>ABSOLUTE VALUE RANGE APRIL VING TI<br>(MAXIMUM 0.0 0.01<br>MAXIMUM 0.0 0.01<br>0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0 J.10<br>4<br>0 EACH LEVEL<br>16HEST LEVEL ONLY)<br>0.10 0.50<br>0.50 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00 1.50<br>1.50 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.00 3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.00<br>•,70                                                                                               |
| IN THE WATER COLUMN<br>IN THE ATTER COLUMN<br>IN THE ATTER<br>IN THE WATER<br>IN THE WATER<br>ID.249101 MINUTES FOR MAP<br>JULY 18. 1977<br>OIL AND GREASE (IN PPM)<br>IN THE WATER COLUMN (MID-WATER)<br>DATA VALUE EXTREMES ARE<br>FOTAL MISSING DATA POINTS IS<br>ABSOLUTE VALUE RANGE APPLYING TH<br>('MAXIMUM' INCLUDED IN M<br>MINIMUM D-0 0-01<br>MAXIMUM D-0 0-10<br>PERCENTAGE OF TOTAL ABSOLUTE VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0 J.10<br>4<br>0 EACH LEVEL<br>16HEST LEVEL ONLY)<br>0.10 0.50<br>0.50 1.00<br>LUE RANGE APPLYING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | нор<br>1.00 1.50<br>1.50 2.00<br>То Еасн Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.00 3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.00<br>4.70                                                                                               |
| UN THE WATER COLUMN<br>AT MID-WATER<br>AT MID-WATER<br>AT MID-WATER<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0 1.10<br>4<br>0.10 0.50<br>0.10 0.50<br>0.50 1.00<br>LUE RANGE APPLYING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1-00 1-50<br>1-50 2-00<br>TD EACH LEVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.00 3.00<br>3.00 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - <b>9</b> 1<br>-9 1<br>5-00<br>5-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.00<br>4.73<br>25.37                                                                                      |
| UN THE WATER COLUMN<br>AT MID-WATER<br>AT MID-WATER<br>AT MID-WATER<br>AT MID-WATER<br>AT MID-WATER<br>AT MID-WATER<br>AT MID-WATER<br>AND GREASE (IN PPM)<br>IN THE WATER COLUMN (MID-WATER)<br>DATA VALUE EXTREMES ARE<br>FOTAL MISSING DATA POINTS IS<br>ABSOLUTE VALUE BANGE APPLYING TH<br>("MAXIMUM" DOD DODI<br>MAXIMUM DOD DODI<br>PERCENTAGE OF TOTAL ABSOLUTE VALUE VALUE VALUE VALUE VALUE VALUE ABSOLUTE VALUE VALUE ABSOLUTE VALUE                                                                                                                                                                                                                                                                      | 0.0 J.10<br>4<br>0 EACH LEVEL<br>16HEST LEVEL ONLYJ<br>0.10 0.50<br>0.50 1.00<br>LUE RANGE APPLYING<br>5.97 7.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00 1.50<br>1.50 2.00<br>TO EACH LEVEL<br>7.46 7.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.00 3.00<br>3.00 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.00<br>6.70<br>25.37                                                                                      |
| IN THE WATER COLUMN<br>IN THE ATER<br>IN THE ATER<br>IN THE ATER<br>IN THE WATER<br>IN THE WATER<br>IN THE WATER COLUMN (MID-WATER)<br>IN THE WATE                                                                                                                                                                 | 0.0 J.10<br>4<br>0 EACM LEVEL<br>1GHEST LEVEL ONLYJ<br>0.10 0.50<br>1.00<br>LUE RANGE APPLYING<br>5.97 7.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | нор<br>1-00 1-50<br>1-50 2-00<br>То ЕАСМ LEVEL<br>7.46 7-46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.00 3.00<br>3.00 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - <b>9</b> 1<br>- 9 1<br>5 - 00<br>5 - 14 - 93                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.00<br>•,70<br>25.37                                                                                      |
| UN THE WATER COLUMN<br>AT MID-WATER<br>AT MID-WATER<br>AT MID-WATER<br>I AT MID-WATER                                      | 0.0 1.10<br>4<br>0.10 0.50<br>0.10 0.50<br>0.50 1.00<br>LUE RANGE APPLYING<br>5.97 7.44<br>001NT VALUES IN EAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00 1.50<br>1.50 2.00<br>TO EACH LEVEL<br>7.46 7.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.00 3.00<br>10.03 14.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - <b>9</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.00<br>•.73<br>25.37                                                                                      |
| UN THE WATER COLUMN<br>IN THE ATER<br>IN THE ATER<br>IN THE WATER<br>ID-249101 MINUTES FOR WAP<br>JULY 18. 1977<br>OIL AND GREASE (IN PPM)<br>IN THE WATER COLUMN (MID-WATER)<br>DATA VALUE EXTREMES ARE<br>TOTAL MISSING DATA POINTS IS<br>ABSOLUTE VALUE RANGE APPLYING TH<br>(*AAXIMUN* INCLUDED IN M<br>MINIMUN D-0 0-01<br>MAXIMUN D-01 0-10<br>PERCENTAGE OF TOTAL ABSOLUTE VALUE<br>C+15 1-34<br>PREQUENCY DISTRIBUTION OF DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0 J.10<br>4<br>0 EACH LEVEL<br>16HEST LEVEL ONLYJ<br>0.10 0.50<br>0.50 1.00<br>LUE RANGE APPLYING<br>5.97 7.44<br>POINT VALUES IN EAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1-00 1-50<br>1-00 2-00<br>TD EACH LEVEL<br>7.46 7-46<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.00 3.00<br>3.00 4.00<br>14.93 14.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - <b>9</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.00<br>4.73<br>25.37                                                                                      |
| IN THE WATER COLUMN<br>IN THE ATTER COLUMN<br>IN THE WATER<br>ID.249101 MINUTES FOR WAP<br>JULY 18. 1977<br>OIL AND GREASE (IN PPM)<br>IN THE WATER COLUMN (MID-WATER)<br>OATA VALUE EXTREMES ARE<br>FOTAL MISSING DATA POINTS IS<br>ABSOLUTE VALUE RANCE APD, VING TI<br>(MAXIMUM D.O D.OI<br>MAXIMUM D.O D.OI<br>MAXIMUM D.O D.OI<br>PERCENTAGE OF TOTAL ABSOLUTE VA<br>O.15 I-34<br>PREQUENCY DISTRIBUTION OF DATA<br>LEVEL 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0-0 J-10<br>4<br>0 EACH LEVEL<br>1GHEST LEVEL ONLY<br>0-10 0.50<br>0-50 1.00<br>LUE RANGE APPLYING<br>5-97 7-44<br>POINT VALUES IN EAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.00 1.50<br>1.50 2.00<br>TD EACH LEVEL<br>7.46 7.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.00 3.00<br>3.00 4.00<br>14.93 14.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.00<br>•.73<br>25.37                                                                                      |
| IN THE WATER COLUMN<br>IN THE ATER<br>IN THE ATER<br>IN THE WATER<br>ID.249101 MINUTES FOR WAP<br>JULY 18. 1977<br>OIL AND GREASE (IN PPM)<br>IN THE WATER COLUMN (MID-WATER)<br>DATA VALUE EXTREMES ARE<br>FOTAL MISSING DATA POINTS IS<br>ABSOLUTE VALUE RANGE APPLYING TH<br>(*MAXIMUM D.0 0.01<br>MAXIMUM D.0 0.01<br>PERCENTAGE OF TOTAL ABSOLUTE VAL<br>Q.15 1.34<br>PREQUENCY DISTRIBUTION OF DATA<br>LEVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0 J.10<br>4<br>0 EACH LEVEL<br>1GHEST LEVEL ONLY<br>0.10 0.50<br>0.50 1.00<br>LUE RANGE APPLYING<br>5.97 7.44<br>POINT VALUES IN EAC<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | нор 1.50<br>1.00 1.50<br>1.50 2.00<br>То Еасн LEVEL<br>7.46 7.46<br>5 5 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.00 3.00<br>14.93 14.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 4-04<br>-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.00<br>•.73<br>25.37                                                                                      |
| ULT THE WATER COLUMN<br>IN THE ATTER COLUMN<br>IN THE WATER<br>JULY 18. 1977<br>OIL AND GREASE (IN PPM)<br>IN THE WATER COLUMN (MID-WATER)<br>DATA VALUE EXTREMES ARE<br>TOTAL MISSING DATA POINTS IS<br>ABSOLUTE VALUE GANGE APPLYING TH<br>("MAXIMUM" INCLUDED IN M<br>MINIMUM D-0 0-01<br>MAXIMUM D-01 0-10<br>PERCENTAGE OF TOTAL ABSOLUTE VALUE<br>CALS 1-34<br>PREQUENCY DISTRIBUTION OF DATA<br>LEVEL 1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0 1.10<br>0.0 1.10<br>0.10 0.50<br>0.50 1.00<br>LUE RANGE APPLYING<br>5.97 7.44<br>POINT VALUES IN EAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L-00 L-50<br>I-006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.00 3.00<br>3.00 4.00<br>14.93 14.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.00<br>•.73<br>25.37                                                                                      |
| IN THE WATER COLUMN<br>IN THE ATTER COLUMN<br>IN THE WATER<br>ID.249101 MINUTES FOR WAP<br>JULY 18. 1977<br>OIL AND GREASE (IN PPM)<br>IN THE WATER COLUMN (MID-WATER)<br>DATA VALUE EXTREMES ARE<br>FOTAL MISSING DATA POINTS IS<br>ABSOLUTE VALUE BANGE APPLYING TI<br>('MAXINUM' INCLUDED IN M<br>MINIMUM 0.0 0.01<br>PERCENTAGE OF TOTAL ABSOLUTE VALUE<br>CALS 1.34<br>FREQUENCY DISTRIBUTION OF DATA<br>LEVEL I<br>SYMBOLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0 J.10<br>4<br>0 EACH LEVEL<br>1GHEST LEVEL ONLYJ<br>0.10 0.50<br>0.50 1.00<br>LUE RANGE APPLYING<br>5.97 7.44<br>POINT VALUES IN EAC<br>3<br>4<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L.00 1.50<br>1.50 2.00<br>TO EACH LEVEL<br>7.46 7.46<br>H LEVEL<br>5.00<br>TO EACH LEVEL<br>7.46 7.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.00 3.00<br>14.93 14-93<br>7 000000000 00000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.00<br>•.73<br>25.37                                                                                      |
| IN THE WATER COLUMN<br>IN THE ATTER COLUMN<br>AT MID-WATER<br>IN THE WATER<br>JULY 18. 1977<br>OIL AND GREASE (IN PPM)<br>IN THE WATER COLUMN (MID-WATER)<br>DATA VALUE EXTREMES ARE<br>FOTAL MISSING DATA POINTS IS<br>ABSOLUTE VALUE RANGE APPLYING TH<br>('MAXIMUM' INCLUDED IN M<br>MINIMUM D-OI D-II<br>MAXIMUM D-OI D-II<br>PERCENTAGE OF TOTAL ABSOLUTE VA<br>Q.15 I-34<br>PREQUENCY DISTRIBUTION OF DATA<br>SYMBOLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0-0 J-10<br>4<br>0 EACH LEVEL<br>1GHEST LEVEL ONLY3<br>0-10 0.50<br>0-50 1.00<br>LUE RANGE APPLYING<br>5-97 7-44<br>POINT VALUES IN EAC<br>4<br>4<br>4<br>4<br>4<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | аланананананананананананананананананана                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.00 3.00<br>3.00 4.00<br>14.93 14.93<br>X 00000000 0000000<br>X 00000000 0000000<br>X 00000000 0000000<br>X 000000000 00000000<br>X 000000000 0000000000                                                                                                                                | - 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.00<br>•.70<br>25.37                                                                                      |
| UN THE WATER COLUMN<br>AT MID-WATER<br>AT MID-WATER<br>AT MID-WATER<br>I AT MID GREASE (IN DPM)<br>IN THE WATER COLUMN (MID-WATER)<br>IN THE WATER COLUMN (MID-WATER)<br>I AT MID GREASE (IN DPM)<br>IN THE WATER COLUMN (MID-WATER)<br>I AT MID GREASE (IN DPM)<br>IN THE WATER COLUMN (MID-WATER)<br>I AT MID GREASE (IN DPM)<br>IN THE WATER COLUMN (MID-WATER)<br>I AT MID GREASE (IN DPM)<br>IN THE WATER COLUMN (MID-WATER)<br>I AT MID GREASE (IN DPM)<br>IN THE WATER COLUMN (MID-WATER)<br>I AT MID GREASE (IN DPM)<br>IN THE WATER COLUMN (MID-WATER)<br>I AT MID GREASE (IN DPM)<br>I AT MID-WATER COLUMN (MID-WATER)<br>I AT MID-WATER COLUMN (MID-WATER)<br>I AT MID-WATER COLUMN (MID-WATER)<br>I AT MID-WATER COLUMN (MID-WATER)<br>I AT MID GREASE (IN DPM)<br>I AT MID-WATER COLUMN (MID-WATER)<br>I AT MID GREASE (IN DPM)<br>I AT MID-WATER COLUMN (MID-WATER)<br>I AT MID GREASE (IN DPM)<br>I AT MID GR                                                                                                                                 | 0-0 1-10<br>4<br>0 EACH LEVEL<br>1GHEST LEVEL ONLY3<br>0-10 0.50<br>0-50 1.00<br>LUE RANGE APPLYING<br>5-97 7-46<br>POINT VALUES IN EAC<br>1-9-1 1 #######                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1-00 1-50<br>1-00 1-50<br>1-50 2-00<br>TD EACH LEVEL<br>7.46 7-46<br>H LEVEL<br>5 6<br>+++++++ XXXXXXXX<br>+++++++ XXXXXXXX<br>+++++++ XXXXXXXXX<br>+++++++ XXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.00 3.00<br>3.00 4.00<br>14.93 14.93<br>7 8<br>20000000 600000<br>10.00000 600000<br>10.000000 600000<br>10.0000000 6000000<br>10.0000000 6000000<br>10.0000000 6000000<br>10.0000000000000<br>10.000000000000 | - 400<br>- 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.00<br>•.73<br>25.37<br>10                                                                                |
| IN THE WATER COLUMN<br>IN THE ATER<br>IN THE ATER<br>IN THE ATER<br>ID-249101 MINUTES FOR MAP<br>JULY 18. 1977<br>OIL AND GREASE (IN PPM)<br>IN THE WATER COLUMN (MID-WATER)<br>DATA VALUE EXTREMES ARE<br>FOTAL MISSING DATA POINTS IS<br>ABSOLUTE VALUE EXTREMES ARE<br>FOTAL MISSING DATA POINTS IS<br>ABSOLUTE VALUE RANGE APPLYING TH<br>('MAXIMUM' INCLUDED IN M<br>MINIMUM 0.0 0.01<br>PERCENTAGE OF TOTAL ABSOLUTE VALUE<br>CALL DISTRIBUTION OF DATA<br>LEVEL I<br>SYMBOLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0 J.10<br>0.0 J.10<br>0.10 0.50<br>0.50 1.00<br>LUE RANGE APPLYING<br>5.97 7.44<br>POINT VALUES IN EAC<br>3.44<br>POINT VALUES IN EAC<br>4.44<br>POINT VALUES IN FINIT VALUES IN EAC<br>4.44<br>POINT VALUES IN FINIT V                                                                                                                                                                                                                                                                                                                                                                                                                           | 1-00 1-50<br>1-00 1-50<br>1-50 2-00<br>TD EACH LEVEL<br>7.46 7-46<br>H LEVEL<br>566<br>H LEVEL<br>1-566<br>H LEVEL<br>1-56<br>H LEVEL<br>1-566<br>H LEVEL<br>1-56<br>H LEVEL<br>1-56<br>H LEVEL<br>1-56<br>H LEVEL<br>1-56<br>H LEVEL<br>1-56<br>H LEVEL<br>1-56<br>H LEVEL<br>1-56<br>H LEVEL<br>1-56<br>H LEVEL<br>1-5 | 2.00 3.00<br>3.00 4.00<br>14.93 14.93<br>7 0<br>7 0<br>7 0<br>7 0<br>7 0<br>7 0<br>7 0<br>7 0<br>7 0<br>7 0                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.00<br>•.72<br>25.37<br>15                                                                                |
| UN THE WATER COLUMN<br>AT MID-WATER<br>AT MID-WATER<br>AT MID-WATER<br>AT MID-WATER<br>AT MID-WATER<br>AT MID-WATER<br>AT MID-WATER<br>IN THE WATER COLUMN (MID-WATER)<br>ULLY 18. 1977<br>OIL AND GREASE (IN PPM)<br>IN THE WATER COLUMN (MID-WATER)<br>OATA VALUE EXTREMES ARE<br>TOTAL MISSING DATA POINTS (S<br>ABSOLUTE VALUE BANGE APPLYING TI<br>(MAXIMUM 0.01 0.10<br>PERCENTAGE OF TOTAL ABSOLUTE VA<br>O.15 1-34<br>FREQUENCY DISTRIBUTION OF DATA<br>LEVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0 J.10<br>4<br>0 EACM LEVEL<br>1GHEST LEVEL ONLYJ<br>0.10 0.50<br>LUE RANGE APPLYING<br>5.97 7.44<br>POINT VALUES IN EAC<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1-00 1-50<br>1-50 2-00<br>То ЕАСМ LEVEL<br>7.46 7.46<br>H LEVEL<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.00 3.00<br>3.00 4.00<br>19,93 14.93<br>7 8<br>7 8<br>7 8<br>7 8<br>7 8<br>7 8<br>7 8<br>7 8<br>7 8<br>7 8                                                                                                                                                                                                                                                                                                                                                                                             | -9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.00<br>•,70<br>25.37                                                                                      |
| UN THE WATER COLUMN<br>AT MID-WATER<br>AT MID-WATER<br>AT MID-WATER<br>ID-249101 MINUTES FOR MAP<br>JULY 18. 1977<br>OIL AND GREASE (IN PPM)<br>IN THE WATER COLUMN (MID-WATER)<br>DATA VALUE EXTREMES ARE<br>FOTAL MISSING DATA POINTS IS<br>ABSOLUTE VALUE RANGE APRLYING TH<br>(MAXIMUM 0.0 0.01<br>MAXIMUM 0.0 0.10<br>PERCENTAGE OF TOTAL ABSOLUTE VA<br>Q.15 1-34<br>FREQUENCY DISTRIBUTION OF DATA<br>LEVEL 20<br>COLUMN COLUMN (MID-WATER)<br>COLUMN COLUMN (MID-WATER)<br>COLUMN COLUMN (MID-WATER)<br>COLUMN COLUMN (MID-WATER)<br>COLUMN COLUMN (MID-WATER)<br>COLUMN (MID-WATE                                                                                               | 0.0 J.10<br>4<br>0 EACH LEVEL<br>1GHEST LEVEL ONLY<br>0.10 0.50<br>0.50 1.00<br>LUE RANGE APPLYING<br>5.97 7.44<br>POINT VALUES IN EAC<br>3.00<br>LUE RANGE APPLYING<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 1.00 1.50<br>1.50 2.00<br>TO EACH LEVEL<br>7.46 7.46<br>H LEVEL<br>5 6<br>5 6<br>5 7<br>1.50 2.00<br>TO EACH LEVEL<br>7.46 7.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2-00 3-00<br>-7 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 4-04<br>-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.00<br>•.73<br>25.37                                                                                      |
| UN THE WATER COLUMN<br>AT MID-WATER<br>AT MID-WATER<br>AT MID-WATER<br>UN THE WATER<br>UN THE WATER<br>COLUMN (MID-WATER)<br>ULY 18. 1977<br>OIL AND GREASE (IN PPM)<br>IN THE WATER COLUMN (MID-WATER)<br>DATA VALUE EXTREMES ARE<br>TOTAL MISSING DATA POINTS IS<br>ABSOLUTE VALUE RANGE APPLYING TH<br>("MAXIMUM" INCLUDED IN M<br>MINIMUM D.O 0.01<br>MAXIMUM D.O 0.01<br>PERCENTAGE OF TOTAL ABSOLUTE VA<br>Q.15 1.34<br>PREQUENCY DISTRIBUTION OF DATA<br>LEVEL 1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0-0 1-10<br>0-0 1-10<br>0-10 0.54<br>0-10 0.54<br>0-10 0.54<br>0-50 1-00<br>LUE RANGE APPLYING<br>5-97 7-44<br>POINT VALUES IN EAC<br>1-3-1 1-44<br>1-3-1 1-44<br>1-44<br>1-3-1 1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44<br>1-44                                                                     | L-00 1-50<br>I-00 1-50<br>I-50 2-00<br>TO EACH LEVEL<br>7.46 7-46<br>H LEVEL<br>5 6<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.00 3.00<br>3.00 4.00<br>14.93 14.93<br>7 8<br>7 8<br>7 8<br>7 8<br>7 8<br>7 8<br>7 8<br>7 8                                                                                                                                                                                                                                                                                                                                                                                                           | - 9 1<br>- 9 | 5.00<br>•.73<br>25.37                                                                                      |
| UN THE WATER COLUMN<br>AT MID-WATER<br>AT MID-WATER<br>AT MID-WATER<br>AT MID-WATER<br>AT MID-WATER<br>D.249101 MINUTES FOR WAP<br>JULY 18. 1977<br>OIL AND GREASE (IN PPM)<br>IN THE WATER COLUMN (MID-WATER)<br>DATA VALUE EXTREMES ARE<br>FOTAL MISSING DATA POINTS IS<br>ABSOLUTE VALUE EXTREMES ARE<br>FOTAL MISSING DATA POINTS IS<br>ABSOLUTE VALUE RANGE APPLYING TI<br>("MAXIMUM" O.0 0.01<br>MAXIMUM" O.0 0.01<br>PERCENTAGE OF TOTAL ABSOLUTE VALUE<br>SYMBOLS<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0 J.10<br>0.10 0.50<br>0.10 0.50<br>0.50 1.00<br>LUE RANGE APPLYING<br>5.97 7.44<br>POINT VALUES IN EAC<br>J.10<br>0.10 1.50<br>LUE RANGE APPLYING<br>1.00<br>LUE RANGE APPLYING<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00   | I-00 1-50<br>I-00 1-50<br>I-50 2-00<br>TD EACH LEVEL<br>7.46 7-46<br>H LEVEL<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.00 3.00<br>3.00 4.00<br>14.93 14.93<br>7 8<br>2.0000000 00000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                 | - 9 1<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.00<br>4.73<br>25.37                                                                                      |

.0.00. ------------------------0.40--FIGURE 16. JULT 18, 1977 DIL AND GREASE (IN PPH) In The Water Column I Meter Above the Bottom -1----10-219833 HINUTES FOR MAP JULT 18. 1977 OIL AND GREASE (IN PPH) IN THE WATER COLUMN I NETER ABOVE THE BUTTON DATA VALUE EXTREMES ARE 0.0 0.80 TUTAL HISSING DATA POINTS IS 3 ABSOLUTE VALUE RANGE APPLATING TO EACH LEVEL ("MAXIMUM" INCLUDED IM HIGHEST LEVEL OMLY) MINIRUM MAXINUM 0.0 0.01 0-10 0-50 1-00 1-00 1-50 2.00 2.00 3.00 3.00 4.00 5.00 PERCENTAGE OF TOTAL ABSOLUTE VALUE RANGE APPLYING TO EACH LEVEL 0.15 t = 34 5.97 7.46 7.46 7.46 24-93 14.93 14.93 25.37 ŝ































YARDS

U.

t

1.11.014.2.11.1

.







Figure 31. Diver Survey of Residual Oil from the Sansinena, December 2, 1977.



# III. BIOLOGICAL EFFECTS OF THE SANSINENA INCIDENT

# INTRODUCTION

The effects on the marine biota of the <u>Sansinena</u> explosion of December 17, 1976, and the consequent spillage of Bunker C fuel, were evaluated in several ways. The groups of organisms that make up the food web were examined as part of the trophic structure, from nutrients and primary productivity to primary and secondary consumer organisms. Habitats were examined for impacts on the species present, or expected to be present, and on their populations. These factors were then compared with conditions prior to the incident within the harbor, and with ambient conditions outside the harbor. Harbors Environmental Projects has monthly and quarterly sampling records from 1972 to 1978 at a station (Al) outside the entrance to Los Angeles Harbor at the sea buoy (Part I, Figure 1). plus eight other A stations in the outer Los Angeles Harbor. These data were used for comparison. Ambient conditions were warmer than usual during the preceding year and the study period. Therefore, efforts were made to examine the role of temperature as it compared to the impacts of the spill.

A series of 24 stations was established in the vicinity of the <u>Sansinena</u> for sampling on December 29 and 30, 1976. The number of stations occupied quarterly was reduced subsequently because of the time and effort involved. However, the analytical results seen in the plankton and benthos nevertheless indicated instability and variation between stations throughout most of the year that justified an extensive station pattern.

# A. PRIMARY PRODUCTIVITY AND NUTRIENTS

Samples for measurement of phytoplankton productivity, chlorophyll a and assimilation ratio were collected at five stations near the <u>Sansinena</u> on December 23, 1976. While sampling was very difficult for the first month because of containment and cleanup efforts, it was important to obtain productivity measurements as close as possible to the site initially to look for micro-effects. The station pattern was expanded to the newly established UO1 to UO24 station series on December 29-30, 1976, so the stations are not directly comparable.

Sampling had been carried out at the regular HEP stations in the vicinity on December 1, 1976 as part of the monthly program, supported at that time partially by the Southern California Gas Company and the Sea Grant Program. The stations of this series that are near the site of the incident are stations A2, A8 and A9. Station A10 was not sampled on the date. These stations are shown in Figure 33, along with stations established to monitor the effects of the <u>Sansinena</u> incident.

Station A9 is beside the channel marker buoy where the <u>Sansinena</u> docked; this station became identified as UO9 for the oil study. It was not possible to get to the buoy itself, so samples were taken just outside the boom ("sea curtain") to the east of A9. Station A10 is at the entry of the Holiday



Harbor Marina, and was close to UO3, which was located in the center of the West Channel rather than to the side of the marina. Routine measurements had not been carried out at AlO since the 1973-1974 studies, but it had been used intermittently for a phytoplankton sampling site for another research study.

Stations A8 and A2 are located across the Los Angeles Main Channel and thus should have escaped the flow of Bunker C on the bottom. These two stations have constituted comparative locations for examining possible effects from the oil nearer the site of the spill.

Samples for productivity measurements were taken with a well-rinsed plastic bucket at the surface of the water at each station. Subsamples for each parameter are taken from that sample to insure homogeneity.

Primary productivity measurements were carried out using a modification of the method of Steeman Nielsen (1952) (Table 1, Section I). In this method radiocarbon 14c as a carbonate is used as a tracer in the photosynthetic conversion of nutrient salts to living material by phytoplankton. Productivity values are expressed as  $mgC/hr/m^3$ . These values represent the ability of the phytoplankton present, regardless of population size, to synthesize organic material under the conditions prevalent in the waters sampled. The time factor indicates that this is a measurement of a rate at which a biological process is carried out, unlike most values which represent standing crop or the amount of material present at a given time.

The photosynthetic pigments, the chlorophylls, were assessed by spectrophotometric measurement of acetone extracts of the phytoplankton following the method and formulae described by Strickland and Parsons (1968). Chlorophyll values are a measure of the standing crop of the phytoplankton population present at the time and place of sampling. The determination is made on the basis of pigment analysis; the quantity varies among species and cells but is an acceptable measure of the material available to catalyze conversion of non-living material to phytoplankton.

## Productivity Results

December, 1976. The time of year when the <u>Sansinena</u> incident occurred coincided with the season that is generally lowest in phytoplankton productivity and standing crop. The data from samples collected on December 23, 1976 (Table 6) do not compare directly with subsequent samples because they were collected in a relatively small area, just outside the containment boom. Because of the proximity of the stations and the overall similarity of the data, the values have been averaged for December 23.

Table 7 presents the data for samples collected at the newly established regular stations on December 29-30, 1976. These data show that there were moderately higher productivities at stations UO2 through UO6, and at UO9 to UO11, on December 29-30, as compared with values at the other stations at that time, and with the December 23 values. Also, more moderate increases in the chlorophyll a concentrations resulted in higher assimilation values at those stations than generally were found at the other stations.

<u>April, 1977.</u> Values found in April at the regular UO stations were relatively uniform for productivity, chlorophyll and assimilation ratios (Table 8). The values in April were somewhat higher for productivity and chlorophyll, apparently reflecting a vernal bloom that normally occurs in harbor and other local waters.

July, 1977. The productivity was high in July and, with the chlorophyll data, indicated that the population was probably undergoing a bloom (Table 9). The harbor is generally subject to phytoplankton blooms in the spring and again in the summer months; the so-called red tide blooms of dinoflagellate species usually occur in late summer or in the fall. Patches of red tide may occur in limited areas of the harbors almost year around.

The July bloom may have been indicative of an early appearance of the red tide.

Oguri (1976) presented tables of the primary productivity values for Los Angeles and Long Beach Harbors for 1973 and 1974, which can be used to compare the values. The July 1973 values were lower, but August 1974 values were much higher than those seen at the July 1977 UO stations.

It is possible that some effect may have been exerted by the conversion of the Terminal Island treatment plant to secondary waste effluent in June 1977. Higher levels of nitrite and nitrate, which are readily assimilated by phytoplankton, are expected with secondary treatment. The productivity data (Table 11) showed that higher productivity was found in the vicinity of the <u>Sansinena</u> site (at A9) on December 1, 1976 than was occurring at other stations away from the area (Figure 34). The high productivity at A9 at that time suggests that it was due to some other, unknown cause. There was, however, a rise after the explosion, which did not occur away from the site, followed by a drop in January at all the stations sampled.

Data for chlorophyll concentrations (Table 12) showed fairly good agreement with the productivity data through December 1976. Assimilation ratio data (Table 13) emphasized the differences between the stations close to the site and those farther away. Assimilation was higher close to the site through December; the pattern was atypical as compared with the data at the end of 1977 and January of 1978, shown on the table.

November, 1977. Data for November 1, 1977 (Table 10) showed a pattern of moderate productivity, high chlorophyll values, and low assimilation ratios. This suggests that the phytoplankton population, although it remained relatively high, was either limited or inhibited. This might suggest a declining bloom that occurred with normal seasonal changes. However, this coincided with a return of very high levels of oil and ş÷

grease in the water column and the sediments so that it appears possible that phytoplankton activity was inhibited. Higher than normal temperatures for the period would normally have been expected to produce a fall bloom, such as was shown in November, 1974 data.

The concurrent monitoring program at regular HEP stations included a few sites in the Sansinena area, as well as other locations in the outer Los Angeles Harbor (Figure 1, Section I). Those stations were monitored monthly and were in close enough proximity to permit some direct comparison. Station UO3 is at the same site as AlO, UO9 and A9 were the same site, except that both were deflected to the south by the oil containment boom or curtain. Stations UO3, UO6, UO9, UO10 and UO11 could be considered directly comparable with A9 and A10. These stations as a group were close to the Sansinena site and would be expected to show the most pronounced impact. Stations UO20 and UO21 were farther removed from the site, and might show less impact. They are most directly comparable to stations A2, across the Los Angeles main channel (east of station UO19, off the map, Figure 33). Comparing the data in such a grouping of stations close to the site and farther away from the site permits some extrapolation of finer detail from monthly A station sampling than did the quarterly Union Oil sampling.

Tables 11, 12 and 13 show the combined data for the stations discussed for the period of December 1, 1976 to January 4, 1978. The tables also include the averaged data from the special stations occupied close to the <u>Sansinena</u> on December 23, 1976.

#### Conclusions

The data indicate that there was a significant stimulation in the activity of the phytoplankton in the aftermath of the explosion and oil spill. However, this did not result in a significant increase in the size of the population. The shortness of the period during which this occurred indicates that this was possibly related to the immediate trauma of the incident, rather than the presence of oil in the environment. A small amount of oil in the water is not an uncommon occurrence in the area.

## Nutrients

Nutrient levels in the entire harbor were measured in 1973 and 1974 (AHF, 1976). Nitrite, nitrate and ammonia values were determined for regular A stations on December 1, 1976 prior to the explosion, and at the Union Oil stations shortly afterward (Table 14).

<u>Nitrite</u>. Nitrite levels generally are at maximum in June-September, and the minimum falls in January-February. The mean concentration in 1973-1974 was 0.19, with a range of from 0.0 to 1.02  $\mu$ g-atoms N/1.

Nitrite levels were below 0.20 at A2 and A8, and at 0.21 at A9 before the spill. Nitrite levels dropped slightly by the end of December and then rose gradually in January at A9 (UO9). Levels at A8 were stable and below those of A9, throughout the period. A2 had the lowest readings throughout December, but rose steeply between the 5th and 18th of January to be among the highest (Figure 34).

At station AlO (UO3) the value on December 23rd was close to A8, but it rose somewhat by December 30, and peaked by January 5. It then dropped steeply to a level below all other stations in the area by January 18, 1977.

<u>Nitrate</u>. Nitrate is always the most abundant chemical in the harbor of those measured. The mean concentration for 1973-1974 was 3.42  $\mu$ g-atoms N/1, with a range of 0.0 to 10.06  $\mu$ g-atoms N/1. There is usually a winter maximum, followed by spring and summer lows which build up gradually after August (Raymont, 1963).

Values at A2 were low, while those at A8 were just above average and at A9 were slightly higher. Values at A8 and A2 stayed relatively stable through January 5th with A2 rising somewhat; A2 then rose steeply by January 18 but remained well below A9 values.

ł

Following the spill, values at A9 rose and stayed fairly high, above 6 µg-atoms N/1. Values at UO3 (AlO) were initially higher than at A9 after the spill, but fell at the end of December. The UO3 value returned to the earlier high by January 18, 1977 (Figure 34).

<u>Ammonia</u>. The mean for ammonia in the entire harbor in 1973-1974 was 0.41  $\mu$ g-atoms N/1 with a range from 0.0 to 26.11 and 12.85  $\mu$ g-atoms N/1 respectively (AHF, 1976). There were no seasonal extremes during that period, but intermittent peaks occurred.

Ammonia levels were above average at A2 and A9, and highest at A8 before the spill. A8 is closest to the sewer outfall and cannery waste areas. These values gradually rose from December 1, 1976 to January 5, 1977.

At station UO3 (A10) the reading was in the range with A8 and A9 on December 23 but rose above them, lying between values for UO20 (above UO3) and UO21 (below UO3). At UO20, the high value decreased, as did the UO3 value by January 18.

## Nutrient Results

Nutrient levels peaked well above ambient in the two weeks after the spill in the vicinity. Nitrite rose near the spill and then dropped below ambient by January 18 except at A9. Nitrate remained high closest to the spill site but dropped in the fairway. Ammonia rose and remained high; it was highest nearest the spill. This may reflect the reduced utilization by stressed phytoplankton. Although data points were limited prior to the spill and restricted by cleanup operations afterward, the trends appear to be valid.

Table 6. Dec. 23, 1976. Phytoplankton Productivity, Chlorophyll <u>a</u> and Assimilation Ratio at 5 Special Stations in the Vicinity of the <u>Sansinena</u>. Station SPI was nearest to the bow and station SPV nearest to the stern.

| Station  | Productivity<br>mgC/hr/m <sup>3</sup> | Chlorophyll <u>a</u><br>mg/l | Assimilation Ratio |
|----------|---------------------------------------|------------------------------|--------------------|
| SPI      | 2.97                                  | 0.81                         | 3.67               |
| SPII     | 3.39                                  | 0.92                         | 3.68               |
| SPIII    | 5.92                                  | 0.54                         | 10.96              |
| SPIV     | 3.62                                  | 0.88                         | 4.11               |
| SPV      | 3.16                                  | 0.73                         | 4.33               |
| mean val | ues                                   |                              |                    |
| x        | 3.81                                  | 0.78                         | 5.35               |

Special Station Locations

SPI - near UO3 SPII - near UO6 SPIII - between UO6 and UO7 SPIV - south of UO9 SPV - at UO13 ł

| Station      | Productivity<br>mgC/hr/m <sup>3</sup> | Chlorophyll <u>a</u><br>mg/l | Assimilation Ratio |
|--------------|---------------------------------------|------------------------------|--------------------|
| UOl          | 2.95                                  | 1.13                         | 2.61               |
| U <b>O2</b>  | 5.70                                  | 1.08                         | 5.28               |
| U03          | 7.24                                  | 0.95                         | 7.62               |
| UO <b>4</b>  | 5.40                                  | 0.84                         | 6.43               |
| 005          | 5.30                                  | 1.12                         | 4.73               |
| UO6          | 7.67                                  | 1.18                         | 6.50               |
| U07          | 3.79                                  | 0.99                         | 3.83               |
| 008          | 3.26                                  | 0.77                         | 4.23               |
| UO9          | 4.66                                  | 0.95                         | 4.91               |
| 010          | 4.95                                  | 1.15                         | 4.30               |
| <b>UO11</b>  | 4.72                                  | 0.93                         | 5.08               |
| UO12         | 3.48                                  | 0.75                         | 4.64               |
| <b>UO1</b> 3 | 3.09                                  | 1.29                         | 2.39               |
| UO14         | 4.00                                  | 0.99                         | 4.04               |
| V015         | 3.04                                  | 0.80                         | 3.82               |
| U016         | 3.84                                  | 0.98                         | 3.92               |
| UO17         | 3.73                                  | 0.98                         | 3.82               |
| UO18         | 4.49                                  | 1.15                         | 3.90               |
| UO19         | 2.81                                  | 0.66                         | 4.24               |
| 0020         | 2.64                                  | 0.75                         | 3.52               |
| UO21         | 1.95                                  |                              |                    |
| UO22         | 4.04                                  | 1.19                         | 3.41               |
| UO2 3        | 4.26                                  |                              |                    |
| UO24         | 1.52                                  | 0.75                         | 2.02               |

Table 7.Dec. 29-30, 1976.Phytoplankton Productivity, Chlorophyll a<br/>and Assimilation Ratio at a Series of Stations in Outer<br/>Los Angeles Harbor.Stations are shown in Figure

| Station | Productivity<br>mgC/hr/m <sup>3</sup> | Chloroph <b>yll <u>a</u><br/>mg/l</b> | Assimilation Ratio |
|---------|---------------------------------------|---------------------------------------|--------------------|
| UO3     | 7.25                                  | 2.70                                  | 2.69               |
| UO6     | 5.19                                  | 2.36                                  | 2.20               |
| UO7     | 7.75                                  | 1.49                                  | 5.20               |
| UO8     | 5.51                                  | 1.63                                  | 3.38               |
| UO10    | 3.28                                  | 1.24                                  | 2.65               |
| 0011    | 8.89                                  |                                       |                    |
| U013    | 5.71                                  | 2.37                                  | 2.41               |
| UO15    | 8.07                                  | 2.15                                  | 3.75               |
| UO19    | 8.77                                  | 1.88                                  | 4.66               |
| UO21    | 8.22                                  | 1.31                                  | 6.27               |
| UO22    | 8.91                                  | 2.19                                  | 4.07               |
| UO2 3   | 8.69                                  | 2.23                                  | 3.90               |

Table 8. April 15, 1977. Phytoplankton Productivity, Chlorophyll <u>a</u> and Assimilation Ratio at a Series of Stations in Outer Los Angeles Harbor.

| Station      | Productivity<br>mgC/hr/m <sup>3</sup> | Chlorophyll <u>a</u><br>mg/l | Assimilation Ratio |
|--------------|---------------------------------------|------------------------------|--------------------|
| UO3          | 9.72                                  | 2.21                         | 4.40               |
| U06          | 16.26                                 | 3.80                         | 4.28               |
| U07          | 12.48                                 | 3.18                         | 3.92               |
| U08          | 9.69                                  | 2.28                         | 4.25               |
| <b>UO1</b> 0 | 12.87                                 | 2.31                         | 5.57               |
| U011         | 7.73                                  | 2.33                         | 3.32               |
| U013         | 20.27                                 | 2.39                         | 8.48               |
| U015         | 24.38                                 | 3.22                         | 7.57               |
| U019         | 26.47                                 | 1.94                         | 13.64              |
| UO 21        | 18.42                                 | 1.54                         | 11.96              |
| U022         | 20.12                                 | 2.25                         | 8.94               |
| UO2 3        | 14.34                                 | 3.07                         | 4.67               |

Table 9. July 18, 1977. Phytoplankton Productivity, Chlorophyll <u>a</u> and Assimilation Ratio at a Series of Stations in Outer Los Angeles Harbor.
| Station          | Productivity<br>mgC/hr/m <sup>3</sup> | Chlorophyll <u>a</u><br>mg/l | Assimilation Ratio |
|------------------|---------------------------------------|------------------------------|--------------------|
| UO3              | 4.33                                  | 6.21                         | 0.70               |
| U <b>O</b> 6     | 4.56                                  | 5.99                         | 0.76               |
| UO7              | 3.78                                  | 6.00                         | 0.63               |
| 008              | 4.20                                  | 3.30                         | 1.27               |
| UO10             | 4.01                                  | 3.17                         | 1.09               |
| UO11             | 3.77                                  | 4.07                         | 0.93               |
| U013             | 7.50                                  | 5.00                         | 1.50               |
| U015             | 10.76                                 | 8.94                         | 1.20               |
| 001 <del>9</del> | 3.95                                  | 3.24                         | 1.22               |
| U021             | 5.70                                  | 2.90                         | 1.97               |
| U022             | 7.74                                  | 4.44                         | 1.74               |
| UO2 3            | 5.93                                  | 3.16                         | 1.88               |

Table 10. Nov. 1, 1977. Phytoplankton Productivity, Chlorophyll <u>a</u> and Assimilation Ratio at a Series of Stations in Outer Los Angeles Harbor.

Table 11. Comparison of productivity data at selected Union Oil stations and "A" stations in outer Los Angeles Harbor, 1 December 1976 to 4 January 1978.

| Date      | Stat | ions Neares              | st The S | ansinena | a Site | Stations | Away Fr | om Site |   |
|-----------|------|--------------------------|----------|----------|--------|----------|---------|---------|---|
|           | UO3  | U06                      | UO10     | A9       | A10    | UO20     | UO21    | A2      | ŀ |
| 1 Dec '76 |      |                          |          | 3.46     |        |          |         | 1.42    |   |
| 23 Dec    |      | $\overline{\chi}$ = 3.81 |          |          |        |          |         |         |   |
| 29 Dec    | 7.24 | 7.67                     | 4,95     | 4,66     |        | 2.64     | 1.95    |         | ľ |
| 5 Jan '77 |      |                          |          | 1.92     | 1.29   |          |         | 0.96    |   |
| 2 Feb     |      |                          |          | 3.05     | 3.42   | ľ        |         | 2.27    |   |
| 9 Mar     |      |                          |          | 6.04     | 16.15  |          |         | 14,66   |   |
| 6 Apr     |      |                          |          | 10,09    | 7.99   |          |         | 22.36   |   |
| 18 Apr    | 7.25 | 5.19                     | 3.28     |          |        |          | 8,22    | :       |   |
| 4 May     |      |                          |          | 4.16     | 3.39   |          |         | 4.59    |   |
| 8 June    |      |                          |          | 9.56     | 12.95  |          |         | 14.23   |   |
| 6 July    |      |                          |          | 18,38    | 13.81  |          | :       | 30,52   |   |
| 18 July   | 9.72 | 16.26                    | 12.87    |          |        |          | 18.42   |         |   |
| 3 Aug     |      |                          |          | 39.11    | 35,73  |          |         | 51.50   |   |
| 14 Sept   |      |                          |          | 0.45     | 0.20   |          |         | 0.67    |   |
| 28 Sept   |      |                          |          | 1.92     |        |          |         | 4.95    | l |
| 5 Oct     |      |                          |          | 4.23     |        |          |         | 7.60    |   |
| 12 Oct.   |      |                          |          | 3.77     |        |          | :       | 3.93    |   |
| 1 Nov     | 4.33 | 4.56                     | 4.01     |          |        |          | 5.70    |         |   |
| 2 Nov     |      |                          |          | 3.65     |        |          |         | 4.49    |   |
| 6 Dec     |      |                          |          | 0,62     |        |          |         | 1,17    |   |
| 4 Jan 178 |      |                          |          | 1.40     |        |          |         | 1.98    |   |

| Table 12. | Comparison of chlorophyll $a$ concentrations at selected stations and "A" stations in outer Los Angeles Harbor, 1976 to 4 January 1978. Data are expressed as mg/l. | Union Oil<br>1 December |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|

ł

|           |        |                          |          |         | cito  | Stations | Away Fro | om Site |   |
|-----------|--------|--------------------------|----------|---------|-------|----------|----------|---------|---|
| Date      | Statio | ns Neares                | t the Sa | nsinena | 510   | 1        |          |         |   |
|           | 102    | 106                      | UO10     | A9      | A10   | UO20     | U021     | AZ      |   |
|           | 003    | 000                      |          | 1.54    |       | 1        |          | 0.82    |   |
| 1 Dec •76 | Ì      |                          |          | i       |       |          |          |         |   |
| 23 Dec    |        | $\overline{\chi} = 0.78$ |          |         |       |          |          |         |   |
|           | 0.05   | 1 18                     | 1.15     | 0,95    |       | 0.75     |          |         |   |
| 29 Dec    | 0.95   | 1.10                     |          |         | 0.66  |          |          | 0,36    |   |
| 5 Jan '77 | 1      |                          |          | 1.59    | 0.00  |          |          | 1 13    |   |
| 2.7-1     |        |                          |          | 1.32    | 1.33  |          |          | 1.1-    |   |
| 2 reb     |        |                          |          |         | 5 11  |          |          | 8.19    |   |
| 9 Mar     |        |                          |          | 1,04    | 3.1-  |          |          | 6.22    | ļ |
| 6 bpr     |        |                          |          | 5.84    | 4.06  |          |          |         | l |
| 0 APt     | l      |                          |          | 1       |       |          | 1.31     |         | ļ |
| 18 Apr    | 2.70   | 2.36                     | 1.24     |         |       |          |          | 1.59    |   |
| 4 May     |        |                          |          | 2.22    | 2.75  |          |          |         |   |
|           |        |                          |          | 2.40    | 3,15  |          |          | 2.6/    |   |
| 8 June    |        |                          |          |         | . 10  |          |          | 4.23    |   |
| 6 July    |        |                          |          | 3.56    | 4.19  |          |          | ļ       |   |
| -         |        | 2 80                     | 2.31     |         |       |          | 1.54     |         |   |
| 18 July   | 2.21   | 3.00                     |          |         | · 77  |          |          | 5,43    |   |
| 3 Aug     |        |                          |          | 1.45    | 2.,,, |          |          | 1 2 91  |   |
|           |        |                          |          | 3.28    | 4.03  |          |          | 5.51    |   |
| 14 Sept   | ł      |                          |          | 1 20    |       |          |          | 1.85    |   |
| 28 Sept   |        |                          |          | 2.20    |       |          |          | 4.31    |   |
| F 0.00    |        |                          |          | 4.97    |       |          |          |         |   |
| 5 000     |        |                          |          | 5.31    |       |          |          | 2.03    |   |
| 12 Oct    |        |                          |          |         |       |          | 2,90     |         |   |
| 1 Nov     | 6.2    | 1 5.99                   | 3.17     | 1       |       |          |          | 1 2 14  |   |
|           | Į      |                          |          | 3.46    |       |          |          | 3,14    |   |
| 2 Nov     |        |                          |          |         |       |          |          | 0.52    | • |
| 6 Dec     |        |                          |          | 11.01   |       |          |          | 1.17    | , |
|           |        |                          |          | 1.21    |       | 11       |          |         |   |
| 4 Jan '78 | 1      |                          | _        |         |       |          |          |         |   |

Table 13. Comparison of assimilation ratios at selected Union Oil stations and "A" stations in outer Los Angeles Harbor, 1 December 1976 to 4 January 1978,

| <b>N</b> = + - | 0×=+ | ions Neare               | est the S | ansinena | <u></u> ,   | Stations | Away Fro | m Site |
|----------------|------|--------------------------|-----------|----------|-------------|----------|----------|--------|
| Date           | Stat |                          |           |          | _           |          | ļ        | - Î    |
|                | UO3  | UO6                      | U010      | A9       | <b>A1</b> 0 | 0020     | UO21     | A2     |
| 1 Dec '76      |      |                          |           | 2.25     |             |          |          | 1.67   |
| 23 Dec         |      | $\overline{\chi} = 5.35$ |           |          |             |          |          |        |
| 29~30 Dec      | 7.62 | 6.50                     | 4.30      | 4.91     |             | 3.52     |          |        |
| 5 Jan '77      |      |                          |           | 1.21     | 1.95        |          |          | 2.67   |
| 2 Feb          |      |                          |           | 2.31     | 2,56        |          |          | 2,45   |
| 9 Mar          |      |                          |           | 3.68     | 3,16        |          |          | 1.79   |
| 6 Apr          |      |                          |           | 1.73     | 1.97        |          |          | 3,59   |
| 18 Apr         | 2.69 | 2.20                     | 2.65      |          |             |          | 6.27     |        |
| 4 May          | ļ    |                          |           | 1,87     | 1,23        |          |          | 2,89   |
| 8 June         |      |                          |           | 3.98     | 4.11        |          |          | 5.33   |
| 6 July         |      |                          |           | 5.16     | 3.30        |          |          | 7.22   |
| 18 July        | 4.40 | 4.28                     | 5.57      |          |             |          | 11.96    |        |
| 3 Aug          |      |                          |           | 26,97    | 12.90       |          |          | 9.48   |
| 14 Sept        |      |                          |           | 0.14     | 0.05        |          |          | 0.17   |
| 28 Sept        |      |                          |           | 0.87     |             |          |          | 2.68   |
| 5 Oct          |      |                          |           | 0.85     |             |          |          | 1.76   |
| 12 Oct         |      |                          |           | 0.71     |             |          |          | 1.94   |
| 1 Nov          | 0.70 | 0.76                     | 1.28      |          |             |          | 1.97     |        |
| 2 Nov          |      |                          |           | 1.05     |             |          |          | 1.43   |
| 6 Dec          |      |                          |           | 0.61     |             |          |          | 2.25   |
| 4 Jan 178      |      | _                        |           | 1.16     |             |          |          | 1.69   |
|                |      |                          |           | ť        |             | 11       |          | سير ا  |

|                         | l Dec | 23 Dec   | 30 Dec     | 5 Jan    | 18 Jan   |
|-------------------------|-------|----------|------------|----------|----------|
| NITRITE                 |       |          |            |          |          |
| Sansinena               |       |          |            |          |          |
| $\frac{1}{1000} = 1009$ | 0.21  |          | 0.19       | 0.22     | 0.23     |
| A10=                    |       |          | 0.15       | 0.28     | 0.20     |
| near UO3                |       | 0.20     | 0.22       |          | 0.13     |
| across main channel     |       |          |            |          |          |
| A8                      | 0.19  |          |            | 0.18     |          |
| A2                      | 0.16  |          |            | 0.11     | 0.26     |
| n. side of fairway      |       |          | 0.00       |          | 0.15     |
| UU23                    | ·     |          | 0.20       |          | <u> </u> |
| S. SIDE UL LALIWAY      |       |          | 0.14       |          |          |
|                         |       |          | 0.14       |          | 0.14     |
|                         | ·     |          | <u></u>    |          |          |
| NITRATE                 |       |          | 1          |          |          |
| nearest Sansinena       |       |          |            |          |          |
| A9=U09                  | 4.65  |          | 6.42       | 6.14     | 6.30     |
| A10=                    |       |          |            | 5.45     | 6 71     |
| near UO3                |       | 6.82     | 5.18       |          | 6./1     |
| across main channel     | ~ ~ ^ |          |            | 1 20     |          |
|                         | 3.98  |          |            | 4.20     | 5,11     |
|                         | 2.02  |          | <b>-</b> - | <u> </u> | <u></u>  |
| 1022                    |       |          | 5.42       |          | 4.85     |
| S. Side of fairway      |       | <u> </u> |            |          |          |
|                         |       | 1        | 5.70       |          |          |
| <u>U020</u>             |       |          | 5.87       |          | 4.50     |
|                         |       |          |            |          |          |
| AMMONIA                 |       |          |            |          |          |
| nearest Sansinena       |       |          |            |          |          |
| A9=U09                  | 1.93  |          | 4.86       | 0 24     |          |
| A10=                    |       |          | 7 24       | 8.34     | 1        |
| near UO3                |       | 2.93     | 1.24       |          |          |
| across main channel     |       | ]        | •          | 6.57     |          |
| A8                      | 2.87  |          | 1          | 2.76     |          |
| AZ                      | 1.10  | ┟─────   |            | 1        |          |
| 1022                    |       |          | 5.41       | L        | ļ        |
| S. Side of fairway      |       | <b>_</b> |            |          |          |
| UO21                    |       | ļ        | 6.63       |          |          |
| U020                    |       | l        | 8.78       | <u> </u> | <u> </u> |

E----

Table 14. Comparison of Nutrients Before and After Bunker C Spill, on December 17, 1976 (in µg-atoms N/1).



FIGURE 34 . COMPARISON OF PHYTOPLANKTON AND NUTRIENTS BEFORE AND AFTER THE SANSINENA SPILL.

MARINE STUDIES OF SAN PEDRO BAY, CALIFORNIA. PART 15. DECEMBER 1978

### B. BENTHIC BIOLOGY

The first major study of the marine benthic ecology of Los Angeles-Long Beach Harbors was conducted in the early 1950's (Reish, 1959). Reish found that some portions of the Harbor benthos, such as inner slips, were devoid of macroscopic animal life. Because of the high organic load, the low dissolved oxygen (DO), and the presence of hydrogen sulfide ( $H_2$ S), these areas were characterized as very polluted. Areas that were less polluted supported more diverse assemblages of benthic species.

More recently a number of surveys of limited areas have been conducted in the harbor for private industry. Results of these studies suggest a general improvement of benthic conditions, with more species and less pollution in some areas. Such improvement probably resulted from pollution abatement measures enacted <u>circa</u> 1969, although differences in sampling techniques do not permit exact comparison.

Since 1971 Harbors Environmental Projects (HEP), University of Southern California, has maintained an extensive monitoring program and also conducted a number of small-scale studies in the harbor complex. Data for 1973 and 1974 were analyzed using multivariate techniques as reported in Allan Hancock Foundation (AHF), 1976 and Smith, 1976.

By 1973-1974, the Los Angeles-Long Beach Harbors had one of the richest soft-bottomed communities in southern California. A number of stations in the outer harbor supported 40-75 species and 40,000 to 77,000 individuals per square meter of benthic surface. This can be compared with inner slip areas with 3-20 species and 2,000-10,000 individuals. In Santa Monica Bay, California, an area that is considered to be enhanced by the Hyperion sewage outfall plume, supported 24 species and 16,000 individuals/m<sup>2</sup>.

The harbor area not far from the <u>Sansinena</u> site supported about 40 species and 40,000 individuals/ $m^2$  in 1974 but there is little information on populations since that time.

The effects of seasonal change on benthic invertebrates is probably less severe than it is on planktonic organisms. Effects of changes in annual temperature cycles such as took place in 1976 and 1977 are not known, and the analysis of data available is still in process. Apparently, benthic populations were reduced generally after 1974.

Figures 35 and 36 show a comparison between the annual surface temperature curve and the incidence of three common benthic species for station Al, which is at the sea buoy outside the main channel entry of the Port of Los Angeles, and A9, located by the <u>Sansinena</u> site. Note that one of the species, *Haploscoloplos elongatus*, showed a small rise in April 1977, at the sea buoy (A1), but otherwise counts were low during 1977. At A9, counts of all three species dropped in April from December-January levels, the reverse of expected spring increases in populations. The <u>Sansinena</u> data were analyzed by computer programs similar to those used in the 1976 reports. Results were transformed from dendrograms of stations and two-way tables (TWT) of species information into maps showing site (station) groupings. The groupings are based on the biological data (the occurrences of species and populations) and the abiotic parameters measured (see Section I, this volume, for methods).

Weighted discriminant analysis showed the interactions of the parameters and gives coefficients of separate determination for each parameter. Thus the higher the coefficient for a parameter the more important that parameter is as a variable interacting with all the other biotic and abiotic variables. Bar graph data, presented at the end of this section, shows the separate parameters (Figures 58-67), but the coefficients will generally not show the same ranking of means and extremes as the bar compensates for patchiness and statistical errors in sampling, population dominance and the like.

December 29-30, 1976. The site group separations produced by the dendrograms and two-way tables at first glance appeared to be typical of usual harbor conditions for the season, separating inner slips and outer shallow areas from deeper channels. In general, the inner slips may be warmer, with less circulation (Groups 4 and 5), while outer harbor areas are more influenced by oceanic conditions (Groups 1, 2 and 3). Shallow areas are quicker to warm and to cool, but the usual seasonal drop in ocean temperatures did not occur; rather, temperatures increased toward the end of December and in January 1977 and so the temperatures did not produce separations. Examination of the TWT (Figure 38) showed differences among the site groups based on fairly large gaps in the fauna. The benthic species in the harbor are mostly polychaete worms because of the soft unconsolidated sediments composing the bottom; stirring is common because of shallowness and ship traffic. Some benthic molluscs and crustaceans occur in certain areas, however.

Coefficients of separate determination indicated that salinity, pH, turbidity and depth were important natural variables. The oil and grease levels in the surface sediments were highest for Group 2 stations, as shown by the bar graph data (Figure 67), followed by Group 3 and Group 1 stations, in descending order. It must be noted that the station sampling pattern did not include sites beneath the pool of oil, since all fauna there would have been killed when covered by the thick layer of spilled Bunker fuel. There was little difference between the means of Groups 1 and 4 with regard to surface sediment oil and grease, so that other factors must have influenced the separation as well. Station UO4, in very shallow water, stood alone (Group 5); it is a population feeding area for birds and the benthic fauna might reflect this as well as physical parameters.

Concentrations in sediments for the December 30, 1976 benthic sampling ranged as follows:

| Group | Minimum | Maximum | Mean  |
|-------|---------|---------|-------|
| 1     | 1525    | 4765    | 26.29 |
| 2     | 3925    | 7290    | 2020  |
| 3     | 2815    | 6890    | 4820  |
| 4     | 410     | 5035    | 2426  |
| 5     | 2155    | 2155    | 2155  |

Surface and bottom waters were sampled for oil and grease in December. The groups defined by the benthic species did not seem to be correlated with the surface measurements, which is not surprising for benthic species. The range was from 4.2 ppm at station UO1, down to 0.1 ppm at station 21, on the channel fairway. Later analyses indicated that levels in the bottom water may be more important than in the sediment itself. Group 5 was a single station (UO4) isolated in a shallow area of the harbor that is a popular site for wading birds and gulls. It was isolated, using weighted means, by higher salinity and by lower pH, dissolved oxygen and light transmittance.

While Group 5 had the lowest sediment oil and grease levels, it had the highest level among the bottom water means (Figures 66, 67). This was no doubt responsible for the large gaps in species occurrences shown in the TWT (Figure 38). Only the polychaetes generally found in polluted areas were prominent, along with the clam *Macoma*.

Group 4 stations included inner channel and shallows areas. They were closely related to Group 5 in low temperature, dissolved oxygen, pH and light transmittance and probably separated from Group 5 by reason of lower salinity in Group 4. Sediment oil and grease means were next lowest in Group 4 and second highest in bottom water. There were gaps in the Group 4 species shown in the TWT, but not as extreme as in Group 5, and the species really determine the site groupings.

Site groups 1, 2, and 3 were in deeper water, but had higher weighted means for temperature, dissolved oxygen and pH. Groups 1, 2 and 3 had higher oil and grease levels in the sediment and lower levels in the bottom water than Groups 4 and 5, although Group 1 means were closer to those of Groups 2 and 3 than the others. Groups 1 and 2 were quite close to each other in the dendrogram (Figure 39) as well as overlapping geographically. The species shown in the TWT indicated the differences that created the separations of Groups 1, 2 and 3; otherwise they might have fallen into one large outer harbor group, based only on natural physical parameters.

Figure 40 gives the numbers of species and individuals per square meter of surface, as well as the Shannon-Weiner Diversity Index. Shannon-Weiner values should be viewed with consideration of the restrictions in normal soft-bottom species numbers; the trends in the subsequent quarters are of interest for comparison, however.

January, 1977. At first glance, examination of January data also appeared to show inner slip-outer harbor divisions, with Groups 3 and 5 representing the inner area (Figure 71).

Based on the bar graph data, sediment of oil and grease levels were similar in Groups 1, 2 and 3, whereas the oil and grease levels in surface, midwater, bottom water and sediments were much higher at the single station UO7 in Group 5 (Figure 66). UO7 is in shallower water near Cabrillo Beach; depth was an important factor in separating Groups 3 and 5 from the deeper stations Groups 1, 2 and 4. The January range for all stations in surface sediment oil and grease was from 930 ppm to 5080 ppm, a considerable drop from the December range (Figure 67; Figures 5 and 9, in Section II).

Group 5 had the highest weighted means for temperature and for all the oil and grease measurements in the water column and sediment. It had the lowest weighted mean salinity, dissolved oxygen, pH, and light transmittance as well. Group 3, while close to Group 5 in depth, had the lowest weighted mean temperature and much lower oil and grease levels than Group 5.

Group 1, composed of outer harbor stations, had the highest weighted means for salinity, dissolved oxygen, and pH, the deepest waters, and the lowest oil and grease levels in all measurements. Groups 2 and 4 assumed intermediate positions in the weighted means. Bar graph data (Figures 58-61) showed a wider range for oil and grease values for Group 2 stations than the other site groups. Salinity differences were probably transitory and not significant to the benthic animals.

The most important natural variables for the distribution of benthic organisms in January were temperature, dissolved oxygen, and depth. Bottom water (Im above the sediment) levels of oil and grease were more important than any of the natural variables, according to the coefficients of separate determination.

The two-way table (Figure 42) illustrates the biological data that gave the five groupings. The number of species dropped greatly in January, from about 60 in December to about 40. The dendrogram (Figure 43) could have been divided into 4 major groups instead of 5, merging groups 2 and 3, but the TWT showed clear differences in species composition between the two groups. Although the number of species (taxa) dropped, the average number of organisms per taxon, per square meter (Figure 44) rose. This suggests a biostimulation effect of removal of competitors for the animals able to survive stressed conditions. If bacteria multiply rapidly following a spill, as has been suggested, the benthic filter feeders not affected by toxicity may have found more to eat in the usually lean month of January.

<u>Population Trends</u>. The April sampling showed a large drop in average numbers of individuals per species or taxon, from 1256 in January to 252! At station UO23 near the main channel the drop was from 1865 in January to 341. At UO6, near the <u>Sansinena</u>, December showed an average of 1582; this dropped to 1016 in January, to 361 in April, to 228 in July, and rose to 488 in November.

In contrast UO10 showed an average number of individuals per taxon of 757 in December, 824 in January, and 248 in April. In July, however, the number soared to 2836 and remained up in November. The average number for all taxa rose from the low of 252 in April to 719 in July and back to normal at 1213 in November (Figure 45).

April generally shows an increase in harbor fauna so that the drop was impressive. Unfortunately, no <u>Sansinena</u> studies were possible after

November, 1977, so that the trends in 1978 could not be observed over the UO station pattern. Records for the regular A stations are being taken under contract with the City of Los Angeles during 1978.

April 1977. Classification produced five groups (Figures 46-48), with Group 1 fairly typical of outer harbor stations and with comparatively good diversity and numbers. Station UO15 (Group 5) stood alone in the TWT, with low species and abundance (Figure 47). Along with station UO21 (Group 2) these two sites had fewer species and lower abundance. Identification of the benthic groups according to the species, as shown in the TWT, created some overlap in the groupings according to abiotic parameters, as shown in the bar graphs. The bar graphs and weighted discriminant analysis coefficients indicated the importance of oil and grease levels in bottom waters, which were highest and next highest for groups 2 and 5, respectively (Figure 66). Groups 2 and 5 also had the lowest and next lowest mean pH and dissolved oxygen, respectively. Group 5 had the lowest percent light transmittance; otherwise the two groups were separated only by depth and salinity. Note that neither of these two stations is near the pier.

Important separations in the other groups were found based on depth, salinity, dissolved oxygen, turbidity, and temperature in spite of overlapping of the groups to some extent for most of these. This demonstrates the usefulness of multivariate analysis, when ranges as seen on bar graphs do not provide definitive separation. Figures 58 to 67 show the ranges of physical parameters for the benthic groups and seasons. The Shannon-Weiner Index (Figure 49) ranged from 1.80 to 2.43 and averaged 2.17 in April when total numbers were low. The average SWDI was 1.71 at the end of December and averaged 1.66 in January, 1977.

July 1977. Four groups of sites were identified, somewhat patterned along the lines of inner slip and shoals (Group 1) and outer harbor (Group 3) separations (Figures 50-52). However, the overlapping of groups may serve to indicate that abnormal, stressed patterns existed. Station UO22 (Group 2) was low in species, and station UO7 (Group 4) was particularly low in clam species (Figure 51). In July the average SWDI had dropped back to 1.93, from 2.17 in April (Figure 53).

Separations based on weighted discriminant analysis were more clear in July. Oil and grease levels were distinctive: Oil and grease levels in the water column were higher than in April, but lower than in January. Group 4 (UO7) which was depauperate, was the shallowest and warmest, with the lowest sediment oil and grease, but with the highest oil and grease concentration in the bottom water. There was no overlap with other groups and the difference was clear cut. Group 2 (UO22), also species poor, was the deepest, with surface oil and grease, high bottom water oil and grease, and low sediment oil and grease (Figures 66 and 67).

Coefficients for depth, temperature and pH were important but were dominated by oil and grease levels in water and sediments. Separations of Groups 1 and 3 were less distinctive, based partly on higher mean salinity, dissolved oxygen, pH and lower mean transparency in Group 3 (Figures 59-61).

November 1977. Classification patterns were more definitively separated into outer harbor (Groups 1 and 2) and inner slip (Group 3) stations. There were no really extreme isolates (Figures 54-56), and the species groups in the TWT appeared to be somewhat more balanced (Figure 55). The SWDI (Figure 56) dropped to 1.83, but there are no 1978 data as yet analyzed for the area to extend the comparisons further. Numbers of species or taxa were nearly normal, but populations were nowhere near 1974 levels (AHF, 1976).

Oil and grease levels increased markedly in sediments during the November sampling and showed penetration throughout the 45 cm cores, but in spite of this populations appeared almost recovered to 1976 levels. Analysis in July showed that the benthic populations were correlated with oil and grease levels in the water column at one meter above the sediment rather than the oil and grease in the sediment itself. Group 1 stations had higher oil and grease levels in surface and mid-water, but the ranges in bottom water were overlapped by Group 2, which had a higher mean as well. Group 2 had a lower mean for sediment surface oil and grease, but the ranges were overlapped completely by Groups 1 and 3. This indicates that group separations on the basis of oil and grease alone were not possible. Temperature, dissolved oxygen and salinity exerted as much or more influence.

Group 3 had the lowest mean and range for bottom water oil and grease. However, it also had the lowest temperatures, dissolved oxygen and pH, and poorest light transmittance, but was not depauperate. Groups 1 and 2 were separated by higher salinity in the latter, but shared higher temperatures, dissolved oxygen and pH than Group 3.

## Conclusion

By November 1977 the spill had been cleaned up except for amounts variously estimated at 200 to 4000 barrels. The residual tarry material may well have migrated to the main channel or become covered by storm-shifted silt. However, oil and grease levels in the water and sediments rose greatly and were as high as they had been the previous December, perhaps due to storms.

The benthic community appeared to have recovered by November, 1977, at least to the level of December 29-30, 1976, which was after the explosion but prior to the large drops in numbers of species seen in January (Figure 42) and drops in counts seen in April (Figure 45). Prior to the spill, on December 2, 1976, there had been 76 species or taxa at A9 with average counts of 365 per  $m^2$ . These trends are difficult to interpret, however, and long term data analysis is still in progress.

In spite of the return of high levels of total oil and grease in the water in November, toxic fractions presumably had been largely reduced or dissipated from the residual material or the benthic fauna would not have approached normal numbers. Oil and grease in bottom water still had a high coefficient, but this was exceeded considerably by coefficients for salinity and temperature and approached by dissolved oxygen, so that natural variables appeared to be most important in determining species patterns.



FIGURE 35. ANNUAL SURFACE TEMPERATURE (TOP CURVE) AND ABUNDANCES 1972-1977 AT STATION A1.



FIGURE **36.** ANNUAL SURFACE TEMPERATURE (TOP CURVE) AND ABUNDANCES 1972-1977 AT <u>SANSINENA</u> SITE A9.



Figure 38

Union Oil Benthic Data, December 29-30, 1976.

| STATION GROUPS                                                                                                                                             | ı                                                  | 2                                           | 3                                | 4                                  | 5                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------|----------------------------------|------------------------------------|----------------------------|
| Coincidence numbers,<br>transformed and standardized                                                                                                       | U<br>0<br>2<br>2                                   | U U<br>0 0<br>1 1<br>0 5                    | U U<br>0 3<br>1 2<br>9 1         | 00<br>00<br>73                     |                            |
| * > .75 to 1<br>+ > .5 to .75<br>- > .25 to .50                                                                                                            | / 7<br>6 6<br>1 1<br>2 2<br>9 9                    | 761229                                      | 77<br>66<br>11<br>22<br>29<br>9  | 77612299                           | 7<br>6<br>1<br>2<br>2<br>9 |
| . > 0 to .25<br>blank 0<br>CHAETCZONE CORONA                                                                                                               | U U<br>G O<br>0 1<br>6 1<br>+#+                    | U<br>0<br>2<br>3                            | U U<br>0 0<br>1 2<br>3 0<br>+x-x | UU<br>00<br>10<br>10               | U<br>0<br>4<br>-           |
| CIRRATULIDAE THARYX<br>PARAPRIONOSPID PINNATA<br>Compsonyax Subdiamana<br>Nephtys Cornuta-Franciscana<br>Giveera Americana<br>Parachis Gracii IS-Oculata   | ыл<br>1944<br>1984<br>1984<br>1984<br>1984<br>1994 | ++++-<br>+++++<br>+++++++++++++++++++++++++ | ++<br>++<br>++<br>++             | <br><br>                           | -                          |
| COSSUA CANDIDA<br>NARIOSCULORIJS ELONGATUS<br>THYASIRA FLEXUOSA<br>GYPTIS BREVIPALPA (ARENICOLA-G<br>NEREIS FROCERA<br>EUCHONE LIMMICOLA<br>TUSODI USTROLA | *<br>#+-<br>#(),<br>*+-<br>#                       | -+<br><br>k+¥<br>K                          | X- H<br>X+K<br>X+++<br>+         | ₩+-,<br>₩++<br>₩+¥<br>%₩<br>₩<br>₩ | •                          |
| MARPHYSA DISJUNCTA<br>MARPHYSA DISJUNCTA<br>NOTOMASTUS TENJIS<br>LAONICE CIRRATA<br>OXYUROSIVLIS PACIFICA<br>SISAMBRA TENTACULATA                          | +                                                  | +<br>+++<br>##<br><br>.+X<br>X.X            | H ++<br>H HH<br>- +-<br>         | ¥- к<br>+<br>+<br><br><br>+        | -                          |
| SIRESLOSOWA CRASSIBRANCHIA<br>ETEONE DILATAE<br>Ophiodromus pugettensis<br>PSEUDOFOLYEDRA paucibranchiata<br>Acteoria culturialla<br>Actesta catherinae    | -,-<br>+<br>УК<br>-,-<br>+<br>-,-                  | . *-                                        | ****<br>+<br>#                   | <br>¥<br>¥<br>×<br>+               |                            |
| PHOLOL GLASRA<br>Megalomma Pignentum<br>Thracia Curta<br>Euchone Incolor<br>Tellina Modesta<br>Apmandia Rigolu 23                                          | УЖ<br>47<br>1914<br>5 + 16<br>1                    | + +                                         | *                                | F<br>F<br>++<br>+<br>+             |                            |
| SCHISTOMERINGOS LONGICORNIS<br>MARMOTHOE PRIOPS<br>AMPHICTEIS SCAPHORANCHIATA<br>PRIONOSPIJ MALMORENI<br>EUPHICMEDES CARCHARODONTA                         | × ×<br>×+<br>++                                    | +<br>-+<br>. =                              | ¥¥<br>-++<br>-#+<br>             | +- н<br>Я                          |                            |
| MISCUL FURDER<br>MACOMA ACOLASTA<br>Spiophanes Berkeleyorum<br>Ampharete Labrops<br>Glycera Capitata<br>Amaeana Occidentalis                               |                                                    | +                                           | н<br>+жк<br>¥+ +<br>+ж+<br>тк    | -<br>¥                             |                            |
| PECTINARIA CALIFORNIENSIS-NOWP<br>HARMOTHOE IMBRICATA<br>ACTEOCINA HARPA<br>SPIDCHAETOPTERUS COSTARUM<br>CIRRATULUS CIRPATUS<br>AXINOPSIDA SERRICATA       |                                                    | +<br><br>+++                                |                                  | +                                  | +                          |
| GYPTIS BRUNNEA<br>ACESTA HORIKOSHII<br>Polydora Socialis<br>Peisidice Aspera<br>Capitella Cepitata<br>Tagelus Subteres                                     | •                                                  | + # +<br>+ #<br>+ #<br>M                    | •                                |                                    | ×                          |
| PŘÍČNOSPÍČ PYGMAEUS<br>Spiophanes missionensis<br>Prionospio cirrifera<br>Pricnospio heterobranchia-newp<br>Capitita Ambiseta<br>Maccha hasuta             | *=+<br>_<br><br>*=.                                | -<br>                                       | × +<br>                          | <br>#+<br>#<br>**                  | 4<br>7<br>7<br>7           |
|                                                                                                                                                            |                                                    |                                             |                                  | - I                                |                            |

FIGURE 39 UNION OIL BENTHIC DATA, DECEMBER 1976

| DISTANCE                                |          |         |
|-----------------------------------------|----------|---------|
| 100 80 60 40 20                         | 0.       |         |
|                                         | . 761229 | 000N    |
|                                         | . 761229 | U022    |
|                                         | . 761229 | 1100    |
|                                         | . 761229 | UD 1 0  |
|                                         | . 761229 | UD23    |
| • • • • • • • • • • • • • • • • • • • • | 761229   | 0015    |
| •                                       | . 761229 | 5 t a n |
|                                         | 761229   | UO19    |
|                                         | 761229   | UD20    |
|                                         | 761229   | U021    |
|                                         | 761229   | 1001    |
|                                         | 761229   | 1007    |
|                                         | . 761229 | 8000    |
|                                         | 761229   | 0003    |
|                                         | 761229   | U004    |
|                                         |          |         |





Figure 42

Union Oil Benthic Data, January 17, 1977.

| STATION GROUPS                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                     | 3                                                                                           | 4                                        | 5                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------|-----------------------|
| Coincidence numbers,<br>transformed and standardized<br>* > .75 to 1<br>+ > 5 to .75                                                                                                                                                                                                                                                                                                  | 77<br>77<br>11<br>11<br>77<br>UU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 777<br>001<br>111<br>77<br>00                         | 77<br>77<br>01<br>11<br>77<br>UUU00                                                         | 7 7<br>7 7<br>1 1<br>1 1<br>7 7<br>U U   |                       |
| - > .25 to .50<br>. > 0 to .25<br>blank 0                                                                                                                                                                                                                                                                                                                                             | 1 2<br>6 0<br>7 7 7<br>7 7 7<br>0 0 0<br>1 1 1<br>1 1 1<br>7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9 2<br>3 2<br>7 7<br>7 7<br>0 0<br>1 1<br>1 1<br>7 7  | 0 0<br>9 1<br>7 7<br>7 7<br>0 0<br>1 1<br>1 1<br>7 7                                        | 0 1<br>8 3<br>7<br>7<br>0<br>1<br>1<br>7 | 7<br>7<br>1<br>1<br>7 |
|                                                                                                                                                                                                                                                                                                                                                                                       | U U U<br>0 0 0<br>1 1 2<br>2 5 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U U<br>0 0<br>1 1<br>0 1                              | U U<br>D O<br>1 O<br>4 6                                                                    | 10<br>1<br>1<br>9                        | U<br>0<br>0<br>7      |
| AMPHICTEIS SCAPHOSRANCHIATA<br>HOTOMASTUS TENUIS<br>OXYUROSTYLIS PACIFICA<br>GYPTIS BREVIPALPA (ARENICOLA-G<br>MARPHYSA DISJUNGTA<br>GLYCERA CAPITATA<br>HARMOTHOE PRIOPS<br>PARAPRIONOSPIC PINNATA<br>PRIONOSPIC MALHORENI<br>COMPSOMYAX SUBDIAPHANA<br>OLIVELLA BAETICA<br>LASAEA SUBVIRIDIS<br>THRACIA CURTA<br>LAOMICE CIRRATA<br>PEOTINARIA CULFORNIENSIS-NEWP<br>PRIMA FASCIATA | ж<br>ж<br>ж<br>ж<br>ж<br>ж<br>ж<br>ж<br>ж<br>ж<br>ж<br>ж<br>ж<br>ж                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ++<br>                                                | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 14                                       |                       |
| ACESTA HORIKOSHII<br>GLYCERA AMERICANA<br>LUCINA HUTTALLI<br>NEREIS PROCERA<br>Mysella Pedroana<br>Euphildmedes Carcharodonta<br>Nemtys cornuta-franciscana<br>Strejudsoma Crassisranchia<br>Sigansra Tentaculata<br>Paraonis Gracilis-oculata                                                                                                                                        | + 4 11 11 + 4 11 11 + 4 11 11 + 4 11 11 + 4 11 11 + 11 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 11 + 1 | +                                                     | K<br>+<br>- K.<br>-+-<br>X++.                                                               | +++++                                    |                       |
| CIRRATULIDAE THARYX ~<br>MAPLOSCOLOPLOS ELGNGATUS<br>COSSURA CANDIDA<br>CAPITITA AMBISEIA<br>CHAETOZONE CORONA<br>PRIDHOSAIO CIRRIFERA<br>THEORA LUBRICA<br>MACOMA HISUTA<br>PSEUDOPOLYDORA PAUCIBRANCHIATA<br>EUCHONE LIMNICOLA<br>ETEONE DILATAE<br>PRIONOSPIO PYGMAEUS<br>CIRRATULUS CIRRATUS<br>PHOLOE GLABRA                                                                     | и<br>-+и<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ¥<br>+ -×<br>+++<br>-<br>++-<br>¥<br>¥<br>¥<br>×<br>× |                                                                                             | +<br>+<br>*                              |                       |

:

FIGURE 43 UNION DIL BENTHIC DATA, JANUARY 1977

## **XDISTANCE**

| •   | 770117 U012               | 770117 0016 | 9<br>9<br>9 | 770117 UD15 | 770117 UD20 |         | 770117 UD23 | 770117 UD03 |   | 770117 UD10 |   | 770117 0022 |   |   | 00011 E180EE |   | 270117 UU14 |     | 770117 UD01             |   | 770117 UD06 |   |       | 0<br> |   | ELUI 211022 |   | 770117 UD07 |  |
|-----|---------------------------|-------------|-------------|-------------|-------------|---------|-------------|-------------|---|-------------|---|-------------|---|---|--------------|---|-------------|-----|-------------------------|---|-------------|---|-------|-------|---|-------------|---|-------------|--|
|     | • • • • • • • • • • • • • |             |             |             |             |         |             |             |   |             |   |             |   |   |              |   |             |     | • • • • • • • • • • • • |   |             |   |       |       |   |             |   |             |  |
|     |                           | •           |             | •••••       | •           | • • • • | •           | •           | • | •           | • | ••••        | • |   |              | • |             | •   | •                       |   | •           |   | ••••• |       |   |             |   |             |  |
|     |                           |             |             |             |             |         | •           |             |   | •           | • | • • • • • • | • | • | • • • • • •  | • | •           | •   | •                       |   |             |   |       |       |   | •           | • |             |  |
|     |                           |             |             |             |             |         |             |             |   |             | • | •           | • | • | •            | • | •           | • • |                         | • | •           | ٠ | •     |       | • | •           |   |             |  |
| 100 |                           |             |             |             |             |         |             |             |   |             |   |             |   |   |              |   |             |     |                         |   |             |   |       |       |   |             |   |             |  |

79







Figure 47

Union Oil Benthic Data, April 18, 1977.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6 U<br>0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 1 U U   | U<br>C                                                     |                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|------------------------------------------------------------|---------------------------------------|
| Coincidence numbers,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2<br>1 | 11      | 0<br>7                                                     |                                       |
| transformed and standardized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | 2.2     | ?                                                          | 2                                     |
| * > .75 to 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | 0 0     | ó                                                          | ģ                                     |
| + > .5 to .75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | i i     | 1                                                          | 1                                     |
| - > .25 to .50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |         | <u>م</u>                                                   | •                                     |
| . > 0 to $.25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 00      | 00                                                         | D                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | å 3 .   | 5.                                                         | 5                                     |
| EUMIDA SANGUINEA<br>THRACIA CURIA<br>PRIDNOSPIO HEIENCORANCHIA-NEWP<br>EXOGONE VERUGERA<br>NEREIS PROCERA<br>DYJUROSTYLIS PACIFICA<br>PRIDNOSPIO PYCMAZUS<br>HARIDINGE PRIDPS<br>SPIGPHANES MISSIONENSIS<br>SCHISTOMERINGOS LONGICORNIS<br>SIMENELAIS VERBUCUOSA<br>AXINOFSIDA SIRICATA<br>CUMINGIA CALIFORNICA<br>PSEUDOPOLYDORA PAUCIENANCHIATA<br>POLYDORA CANULERYI (GRACHYCEPH<br>HARNOTHOE IMBRICATA<br>PRIONOSPIO CIRRIPERA<br>CAPITITA AMDISETA<br>COSSURA CANDIDA<br>SIMENELANELLA UNIFORMIS<br>EUCHONE LIMNICOLA<br>HAPLOSCOLOPIOS CLONGATUS<br>EUCHONE LIMNICOLA<br>HAPLOSCOLOPIOS CACHARDONTA<br>GLYCERA AMERICANA<br>THEORA LUBRICA<br>SIGAMBRA TENTACULATA<br>SIGAMBRA TENTACULATA<br>SIGAMBRA TENTACULATA<br>PARAONIS GRACILIS-COLLATA<br>PARAONIS GRACILIS-CULATA<br>PARAONIS GRACILIS-CULATA<br>PARAONIS GRACILIS-CULATA<br>PARAONIS GRACILIS-CULATA<br>PARAONIS GRACILIS-CULATA<br>MARPHYSA DISJUNCTA<br>COMPSONTAX SUBDIAPHANA<br>PECTINARIA CALIFORNIENSIS-NEWP<br>NOTOMASTUS IENVIS<br>ACESTA CATHERINAE<br>THYASIRA FLEXUOSA<br>AMPHICTEIS SCAPHOBRANCHIATA<br>LAGUNGE CIRRATUS<br>ACOMA NASUTA<br>BUCCARDIA BASILARIA<br>BUCCARDIA BASILARIA<br>AMPHARIEL LABRICA<br>AMPHARIEL LABRICA | 1     3     2     2     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3     3 <td></td> <td>ж ж ж н</td> <td>☆ NRXXXXXXX++XXX+1XX++X++1 ☆ NRXXXXXXX++XX+1XX++X++1 ↓ ₩ ₩</td> <td>· · · · · · · · · · · · · · · · · · ·</td> |        | ж ж ж н | ☆ NRXXXXXXX++XXX+1XX++X++1 ☆ NRXXXXXXX++XX+1XX++X++1 ↓ ₩ ₩ | · · · · · · · · · · · · · · · · · · · |
| MAGELONA PITELKAI<br>Stylatula elçiğata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ¥#<br>* *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |         |                                                            |                                       |
| MACOMA ACOLASTA<br>Polydgra socialis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | ₹<br>¥  | -                                                          |                                       |
| PHULDE GLABRA<br>Prionospio Malmoreni<br>Muselii - Ospious                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>++</u> +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×      |         |                                                            |                                       |
| MISELLA MEDULANA<br>PISTA FASCIATA<br>Administra di Comunita                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7- R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | * *    | *       |                                                            |                                       |
| SPIOPHANES BERKELEYORUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ж                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3      |         | " i                                                        | я<br>н                                |

STATION GROUPS 1 2 3 4 5

FIGURE 48 UNION DIL BENTHIC DATA, APRIL 1977

X DISTANCE

|            | 1100   | U023   | 0019   | U020   | U022   | UD 2 1 | UD08   | U010   | 1003   | U013   | 000    | 1001   | U015   |
|------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|            | 770418 | 770418 | 770418 | 770418 | 770418 | 770418 | 770418 | 770418 | 770418 | 770418 | 770418 | 770418 | 770418 |
| 60 40 20 0 |        |        |        |        |        |        |        |        |        |        |        |        |        |
| 100 80     |        |        |        |        |        | •      |        | • •    | • •    | •••    | ••     | •      |        |





Figure 51

Union Oil Benthic Data, July 18, 1977.

| STATION GROUPS                                                                                                   | 1 2                                   | 3                                                     | 4           |
|------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------|-------------|
| Coincidence numbers,                                                                                             | 777<br>0077<br>1288                   | 777<br>777<br>000<br>777<br>111<br>888                | 773718      |
| transformed and standardized                                                                                     | U U<br>0 0<br>0 1                     | U U U<br>0 0 0<br>1 1 6                               | 5<br>0<br>1 |
| + > .5 to .75                                                                                                    | 39                                    | 108<br>777                                            | 7           |
| - > .25 to .50<br>. > 0 to .25<br>blank 0                                                                        | 7777                                  | 777<br>000<br>777<br>111<br>888                       |             |
| ·····                                                                                                            | UUU<br>000<br>002<br>162              | UUU<br>000<br>122<br>531                              |             |
| POLYDORA CAULLERYI (BRACHYCEPH<br>Witringila oldroydi<br>Cumingia californica<br>Sthérelanella uniformis         | *                                     | и<br>Ки<br>+                                          | ¥<br>¥      |
| PRIONOSFIO HETEPOSRANCHIA-NEWP<br>POLYDORA SOCIALIS<br>CIRRAIULUS CIRRAIUS                                       |                                       | ¥                                                     | K<br>K      |
| GLYCERA AMERICANA<br>AXINOPSIDA SERRICANA<br>NARMOTHOE IMERICANA<br>MAGELONA PACIFICA<br>RICLAYIS PUSCIOCIELATHE | +#<br>+-++                            | +X +<br>XXX<br>1 K<br>XX                              | *<br>*      |
| LYONSIA CALIFORNICA<br>NEREIS PROCERA<br>MARPHYSA DISJUNCTA                                                      |                                       | *<br>++ *<br>* * :                                    |             |
| THEORA LUBĖČA<br>DXYURDSTYLIS PACIFICA<br>Pridnospio Pychaeus                                                    | + H H +<br>H +<br>+ + + H             | N + N M                                               |             |
| AMPHARETE LABROPS<br>PSEUDOPOLYDORA PAUCIBRANCHIATA<br>Gyptis Brunnea                                            | +++ 1<br>+#5<br># #                   | ***                                                   |             |
| PRIONOSPIG CIRRIFERA<br>Amphicteis scaphobranchiata<br>Pectinaria californiensis-newp<br>Acteocina harpa         | #+<br>                                | - XKNK<br>- XKNK<br>K++-K<br>+X +                     |             |
| STREBLOSOMA CRASSIBRANCHIA<br>Macoma Nasuta<br>IELLINA Modesta                                                   | <br>                                  | »<br>- #                                              |             |
| HACOMA ACOLASTA<br>Spiochaetopterus Costarum<br>Compsonyax Subdiaphana                                           | -                                     | - +¥<br>* ¥¥                                          |             |
| INTASIRA FLEXUOSA<br>Thracia curta<br>Cirratulidae Tharyx                                                        | <u>+</u>                              | * *<br>+ +x<br>x                                      | _           |
| COSSURA CANDIDA<br>Pakaonis Gracilis-oculata<br>Chariozome Cozona                                                | + <u>.</u><br>-H-X +<br>-+ X -        | -+*X-+<br>+*                                          | •           |
| NEMNIYS CORAUTA-FRANCISCANA<br>Siganbra tentaculata<br>Euphilomedes Carcharodonta                                | +#<br>++ - E<br>-K -                  | ++#+ + +<br>#+ #<br>-+#+                              |             |
| HAPLUSCULOPLUS ELONGATUS<br>EUCHONE LIMNICOLA<br>Gyptis Brevipalpa (Arenicola-g                                  | + + + +                               | ,#¥ -<br>#<br>+-+#+K -                                | -           |
| PRIONOSPIO MALMGRENI<br>Mysella pedrajaka                                                                        | *** ~                                 | ◆ H H + H   4<br>  ~ X + H + H   4<br>  A   H - H   A | •           |
| PARAPRIONOSPIO PINNATA<br>Spidphanes berkeleyorum                                                                | н н н н н н н н н н н н н н н н н н н | - 16+ +   4<br>( + # +   4<br>- # N   4               | +<br>+<br>+ |

FIGURE 52 Union oil Benthic Data, July 1977

X DISTANCE

|               | 1000   | 0003   | 900N  | UO19   | U022   | 1100   | 0015   | UD10   | UD23   | 0008   | U021   | 100N   |
|---------------|--------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|               | 770718 | 770718 | 70718 | 770718 | 770718 | 770718 | 770718 | 770718 | 770718 | 770718 | 770718 | 770718 |
| 80 60 40 20 0 |        |        |       |        |        |        |        |        |        |        |        |        |
| 10(           |        |        |       |        |        |        |        |        |        |        |        |        |





| Figure | ≥ 55 |         |       |          |    |       |
|--------|------|---------|-------|----------|----|-------|
| Union  | Oil  | Benthic | Data, | November | 1, | 1977. |

----

| STATION GROUPS                                      | 1                                        | 2            | 3            |
|-----------------------------------------------------|------------------------------------------|--------------|--------------|
|                                                     |                                          |              |              |
|                                                     |                                          |              |              |
| Coincidonae numbers                                 | មម                                       | u ul         | บบ           |
| Confictuence numbers,                               | 21                                       | 2 1:         |              |
| transformed and standardized                        | 29                                       | ĩŝ           | 37           |
| * > .75 to }                                        | 777                                      | 7            | 77           |
| $+$ $>$ 5 $+$ $\sim$ 75                             | ? ? ?                                    | <u> </u>     | 77           |
| + / .J LU ./J                                       | 111                                      | 1            |              |
| ~ > .25 to .50                                      | ¢ 0 0                                    | 0            | 0            |
| • > 0 to .25                                        |                                          | •            | · •          |
| blank 0                                             | មមម                                      | 0            | U U<br>0 0   |
|                                                     | ĩõĩ                                      | 5            | õõ           |
|                                                     | 180                                      | 2            | 16           |
|                                                     |                                          |              |              |
| PRIONOSPID RETEROBRANCHIA-NEWP<br>Tagelus subteres  |                                          |              | -#-          |
| PISTA DISJUNCTA                                     | -                                        |              | ¥-           |
| CUNINGIA CALIFORNICA                                |                                          |              | * * -<br>* * |
| AXINOPSIDA SERRICATA                                |                                          | +            | ****         |
| THRACIA CURTA                                       | -                                        |              | ***          |
| EUCHONE LIMNICOLA                                   |                                          |              | ***          |
| CANPYLASPIS HARTAE                                  | ľ                                        |              | K M          |
| MACOMA ACOLASTA<br>Dentadermus pubetiensis          | _+++                                     | +            | )≓<br>sr     |
| HAPLOSCOLOPUOS ELONGATUS                            | -<br>+-K-#.                              | + +          | 48-4         |
| NEPHTYS CORNUTA-FRANCISCANA<br>Coesiisa canditaa    | *                                        | * +          | NXX          |
| EUPHILOMEDES CARCHARDCONTA                          | ¥                                        |              | ¥*           |
| MYSELLA PEDROANA<br>PRIONOSPIO CIERIFERA            | +×-<br>+                                 | ++           | - ¥+         |
| MACOMA NASUTA                                       | .~                                       | · +          |              |
| TELLINA MODESIA<br>Oxyurostylis pacifica            | -                                        | +            | ***          |
| PSEUDOPOLYDORA PAUCIBRANCHIATA                      | 5.1.                                     |              | ×+           |
| CAPILLA AMBISELA<br>CIRRATULIDAE THARYX             | 8+4<br>3+++K                             | -++          | ++           |
| CHAETOZONE CORONA                                   | <b>MKR</b> 44                            | *-           | -+           |
| NEREIS PROCERA<br>Amphicifis scaphorranceiata       | - X4 +4<br>                              | -+-          | -            |
| MARPHYSA DISJUNCTA                                  |                                          | -            |              |
| PARADNIS GRACILIS-COULATA<br>PARADRIONOSPIC PINNATA | . <del>4</del> -++<br>+ <del>*</del> +** | <u></u> -    |              |
| PECTINARIA CALIFORNIENSIS-REMP                      | - 4 4                                    | ×            | - +          |
| COMPSOMYAX SUBDIAPHANA                              | КК+ +                                    | ÷            | +            |
| SIGAMBRA TENTACULATA<br>Amenarete labrops           | #++<br>#+-*#                             | ¥            | . ·          |
| ACTEOCINA HARPA                                     | ¥                                        | +            | _            |
| ELEONE DILATAE<br>Cooperella subdiaphana            | + +<br>+ +-*                             | *<br>-       | <b>#</b> -   |
| STHENELANELLA UNIFORMIS                             | ×                                        | . +          | ÷            |
| MEGALOMMA PICMENTUM                                 | * *                                      | *            |              |
| SPIOCHAETOPTERUS COSTARUM                           | ×.                                       | . ·          | +            |
| MAGELONA PACIFICA                                   | +<br>+ <del>X</del>                      | **<br>**     |              |
| GLYCERA AMERICANA<br>Notomastie temate              | ¥ ++                                     | ***          | +            |
| GYPTIS BREVIPALPA (ARENICOLA-G                      | *****                                    | +++          | *            |
| STREBLOSCMA CRASSIBRANCHIA<br>Amafana orotofetalis  |                                          | **           | -*           |
| PRIONOSPIO PYGMAEUS                                 | + #-                                     | . <b>.</b> - |              |
| THEORA LUBRICA<br>Thyasira Flexuosa                 | -+¥+¥<br>+# H                            | +-¥          |              |
| LAONICE CIRRATA                                     | ++                                       | ~#           |              |
| ACTEDCINA CULCITELLA                                |                                          | *            | -            |
| ANCISTROSYLLIS HAMATA                               | NE -                                     |              | ¥            |

FIGURE 56

UNION DIL BENTHIC DATA, NOVEMBER 1977

# X DISTANCE

|     | 1101   | V022                                    | 0008   | 019                                     | 0100   | U021                                    | U023                                    | U015                                    | 1001   | 0003                                    | 0000   | 100 J                                          |
|-----|--------|-----------------------------------------|--------|-----------------------------------------|--------|-----------------------------------------|-----------------------------------------|-----------------------------------------|--------|-----------------------------------------|--------|------------------------------------------------|
|     | 771101 | 771101                                  | 771101 | 771101                                  | 771101 | 771101                                  | 771101                                  | 771101                                  | 101122 | 771101                                  | 771101 | 771101                                         |
| 20  |        |                                         |        |                                         |        | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | ••••••••••••••••••••••••••••••••••••••• | •      | • • • • • • • • • • • • • • • • • • • • |        | •<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>• |
| 40  | •      | • • • • • • • • • • • • • • • • • • • • | •      | ••••••••••••••••••••••••••••••••••••••• | •      | •                                       | •                                       | •                                       |        | ••••••••••••••••••••••••••••••••••••••• | •      | •                                              |
| 60  |        |                                         |        | •                                       | • • •  |                                         | •                                       |                                         |        | •••                                     | •      | :                                              |
| 80  |        |                                         |        |                                         | •      | • •                                     |                                         | •••                                     | • •    | • •                                     | •      |                                                |
| 100 |        |                                         |        |                                         |        |                                         |                                         |                                         |        |                                         |        |                                                |



## ABIOTIC PARAMETERS by BENTHIC GROUPINGS




FIGURE 59 BENTHIC GROUPINGS









# FIGURE 62







# FIGURE 65 BENTHIC GROUPINGS OIL & GREASE (water mid-depth) CRANGE & MEAN ± 2 S.E.)





ŧ





MARINE STUDIES OF SAN PEDRO BAY, CALIFORNIA. PART 15

## C. ZOOPLANKTON INVESTIGATIONS

# Introduction

Planktonic organisms are those that are permanently or temporarily suspended in a water mass and subject to transport by circulation patterns. Although some are able to swim, the organisms generally are not large enough or strong enough to swim any significant distance. Included in the zooplankton are numerous tiny crustaceans called copepods, which furnish food for many fish and invertebrates, plus the eggs, larvae and some juveniles of other crustaceans, molluscs, polychaete worms, ectoprocts, hydroids and fish.

An extensive zooplankton survey of the Los Angeles-Long Beach Harbors was carried out during 1973 and 1974 for the U.S. Army Corps of Engineers (AHF, 1976) by the Harbors Environmental Projects of USC. In this study distribution and diversity of zooplanktonic organisms were studied for the many geographic localities of the harbors and related to seasonal variations as well as points of particular interest, such as areas of chemical pollution or eutrophication. Survey data for Pacific Lighting Corporation cover a five-year period prior to the <u>Sansinena</u> explosion on 17 December 1976.

The objective of the present study of zooplankton was to determine what impact the oil spilled by the <u>Sansinena</u> had upon the zooplankton communities of the harbors. Zooplankton were thus collected for a number of localities throughout 1977 so that a comparison could be made with existing data from past years. Alteration in numbers of animals or species diversity could thus be noted by comparison with these data.

The presence of Bunker C fuel in a marine harbor habitat would be expected to have a considerable impact on any organism living on or in a surface with which the oil makes contact. Benthic epifauna and infauna such as worms, anemones, crabs or sea pens would all be affected by contact with oil. Oil washed ashore or picked up at the air-water interface would also have an impact on marine invertebrates and plants. Zooplankton, because they live within the harbor water column, are likely to show less impact because they are constantly being exchanged by tidal flushing. Oil rising from the bottom or washed by currents, tide or wind-produced turbulence, may have a transient impact on the biota in the water column at any given time.

#### Methods

Surface zooplankton collections were taken aboard the research vessel <u>Golden West</u>, using a half-meter, 253µm nylon, conical plankton net. The net was towed at about one knot for five minutes, with a flow meter of water positioned between the center and the rim of the mouth to record the volume of water flowing through the net. Plankton samples were placed in liter jars and preserved in formalin.

Identification and counting of the samples was preceded by subsampling with a Folsom plankton splitter such that the aliquots contained approximately 500 to 1,000 organisms.

Within a week after the spill sampling was begun on December 23, 1976 at special stations I to V and expanded to ten stations on December 29-30, 1976. The special sampling near A9 (=U09) outside the booms provided data for the area close to the <u>Sansinena</u>.

### Results

The numbers of species found on December 23 were unusually high. The following species were found that are rarely present in the harbor:

| Eucalanus crassus     | Temora discaudata     |
|-----------------------|-----------------------|
| Eucalanus elongatus   | Candacea sp.          |
| Centropages sp.       | Corycaeus geisbrechti |
| Rhincalanus nasutus   | Corycaeus flaccus     |
| Mecynocera clausi     | Farranula curta       |
| Lucicutia flavicornis | Ischnocalanus tenuis  |

The weather and oceanographic conditions for the fall of 1976 and for 1977 were unusually warm, and this may account for differences in the species present. Increased diversity was also found in samples taken on December 1, 1976, outside the harbor. The very high tides of November and December (7 ft+) may have brought into the harbor species that normally occur offshore.

Concentrations of zooplankton at regular Harbors Projects stations sampled on December 1, 1976 prior to the explosion are given in Text Table 3. Station A9 (=U09) is at the channel marker buoy nearest to the <u>Sansinena</u> site. Other stations (A2, A3 and A8) are on the east side of the Los Angeles Main Channel. These data, compared with concentrations found on December 23 and December 29-30, after the spill, show a decrease in concentrations after the explosion.

# Text Table 3. Concentrations of Zooplankton, 1976 (number/meter<sup>3</sup>)

| December 1              | December | 23  | December | 29-30 |
|-------------------------|----------|-----|----------|-------|
| A2: 2774                | SPI-II   | 757 | U01:     | 232   |
| AD: 1003                | SPIII-IV | 593 | UO3:     | 656   |
| YO: 000                 | SP V     | 431 | UO5;     | 192   |
| A9: 829                 |          |     | UO7:     | 414   |
|                         |          |     | U011:    | 787   |
| Dec. 23 special statio  | ns       |     | UO13:    | 568   |
| SPI - near UO3          |          |     | UO15:    | 776   |
| SP II - near UO6        |          |     | UO17:    | 637   |
| SP III - between UO6 at | nd UO7   |     | UO19:    | 807   |
| SP IV - south of UO9    |          |     | UO21:    | 430   |
| SP V - from UO13 to :   | north    |     | UO23:    | 463   |

The most notable feature following the explosion and spill was the persistence of high diversity, for at least a few weeks, with an increase in copepod and cladoceran species, even though the concentrations were reduced. Numbers of individuals of a few species actually increased. Previously the two most numerous harbor copepods had been Acartia tonsa and Paracalanus parvus (AHF, 1976). Following the spill Acartia tonsa appeared to have increased in concentration from December 1, 1976 to the post-spill sampling. Mean Acartia tonsa was about  $1100/m^3$  at stations A2, A8 and A9 prior to the spill, increasing to about  $1400/m^3$  after the spill. This may not be significant, however, due to the generally patchy distribution of zooplankton because of winds, tides and proabaly food supply. Similarly, most Paracalanus parvus concentrations in the post-spill December 29-30 samples were unusually high, particularly at stations U07 through U023. Concentrations after the spill were about 275/m<sup>3</sup>, much higher than they had been since July, 1976.

During 1973-1974 the ranges of mean *Acartia tonsa* concentrations at A2 were  $1800-2400/m^3$ , 1200-1800 at A9, 600-1200 at A10, and about 600 at A8. During that period mean concentrations of *Paracalanus parvus* were between 200 and  $300/m^3$  at A2, A8 and A9, and below 100 at A10.

The abundances of four common species of zooplankton at station A1 (the sea buoy outside Los Angeles Harbor) and at A9 (beside the <u>Sansinena</u> site) are plotted in Figures 68 and 69 for the period 1972-1977. A surface temperature curve is superimposed, for comparing the variation in temperature seasonally and annually with the zooplankton. Figures 70 and 71 give the data on an expanded scale for the year 1977 alone.

No peaks were apparent at the sea buoy (station AI) during the winter of 1976 and early spring, prior to April or May of 1977 in the four species graphed (Figure 70). In contrast, some distinct peaks occurred near A9 (the <u>Sansinena</u> site) in December/January (Figure 71), particularly for *Paracalanus parvus*. However, fall peaks occurred both inside and outside the harbor in September-November 1977. This is not an uncommon phenomenon in the harbor (AHF, 1976) and may be related to seasonal temperature changes.

The numbers of individuals per cubic meter continued to be low outside the harbor from December 1976 through the spring of 1977, but counts in the spill area rose greatly in April as compared to the other area. The numbers of species of copepods and cladocerans dropped in the site area from December / January levels through April and July, and rose again by the November 1977 sampling.

The numbers alone cannot be compared absolutely, because the effects of wind and tide on distribution (patchiness) are difficult to assess. Certainly the data seem to show consistent trends, even though the trends may not be precisely quantifiable.

It is typical of a stressed environment that many species will be eliminated from an area, and a relatively few hardy or opportunistic species will "bloom". The initial surge in numbers is later followed generally by an increase in numbers of species and a decrease in numbers of individuals, due in part to growth and competition. Certain species may not be very tolerant of environmental stress but do not compete well with other species in a normal environment. Conversely some species cannot tolerate the varied environment of a natural estuary and would not survive long there even if they were reintroduced frequently by tidal exchanges.

Conover (1971) found that two species of copepods, *Calanus finmarchicus* and *Temora longicornis*, fed on weathered Bunker C oil particles and that this was a natural factor in the immobilization of an oil spill, without apparent toxic effects on the ingesting copepods. It is not known whether recruitment is possible to any extent, since zooplankton have limited ability to move independently of tidal or other water movements.

With regard to transitory effects of oil on zooplankton, it must be noted that at the time of the collection of the first samples subsequent to the spill (special stations I-V) the technicians observed that the copepods showed no activity and appeared dead. Upon sorting these samples there was no evidence of their death prior to collection, such as the presence of broken or decomposing bodies. It is possible that the zooplankton were in a state of torpor caused by the presence of the oil spill. While this observation is very subjective, it may be significant nevertheless.

#### Discriminant Analysis

Because there are synergistic effects of the physical and chemical parameters exerted on the biota, experimental or observational information on the impact of a particular parameter such as Bunker C fuel may differ from field information. Computer analysis (Section I, this publication) offers a method for calculating and plotting the interactions and indicating the relative importance of each parameter measured. This is not to say that the methods are necessarily statistically significant, or that some unmeasured parameters might not exert an influence that was not recognized.

Temperature ranges were unusual in 1977 and therefore might have exerted an influence that would exceed or mask the impacts of the oil spill. In order to test whether temperature exerted an overriding impact, multiple indiscriminant analysis was first carried out without temperature data intput, and then repeated with temperatures included. Similarly, analysis was carried out with, and without, the input of phytoplankton data to examine the differences in the importance of the oil and grease content of the water column.

A variety of treatments of the data can produce different species and site groupings, so that the importance of different parameters can be examined. The analytical programs were run first, using all the entities (species and higher categories) reported and then using only the most common copepod and cladoceran species. Therefore it must be recognized that the station groupings, the Two-Way-Tables and the dendrograms are not fixed and might be different in each case. Also, weighting of variables is used to minimize particular problems, as for example to reduce extreme ranges of counts of dominant species. The important factors under each set of inputs can thus be identified. If certain factors are identified as important under each of the analyses tested then it can be assumed that the parameters so identified are strongly related to the faunal distribution of that period. Weighting of variables is accomplished by using calculations of biological "distance" between sites by constructing similarity matrices based on groupings determined by the dendrogram calculations. The complex equations used in these analyses are not the subject of this paper and are discussed in depth in Smith, 1976.

Means and extremes of the data for each variable are presented as bar graphs at the end of this section (Figures 88-99). However, in discriminant analysis the means are weighted by using the similarity matrices, so that the values in the tables of weighted group means will not be the same as the values for raw data shown in the bar graphs.

December 1976-January 1977. Because of difficulties in making horizontal plankton tows around booms and cleanup crews, the December 29-30 and January data were combined for multiple discriminant analysis and classification. It is an accepted procedure to combine data for analysis on a seasonal basis in any cast. Figure 72 shows the five groups for the post-spill month which were delineated by classification of all the biological entities listed in the Two-Way-Table (TWT, Figure 73) and the dendrogram (Figure 74).

When another analysis was made using only the 18 most common copepod and cladoceran species and recalculated counts, five groupings still were seen, but slightly different site group separations were created, which isolated station UO1 from UO7 and station UO3 from UO23.

The important result, regardless of the various analyses performed, was that the oil and grease levels in the water column far outweighed any other physical parameters in determining the distribution of zooplankton in the winter period. Interestingly, midwater concentrations of oil and grease were more important than surface water concentrations. Chlorophyll a was the most important natural variable. Temperature and salinity were less important variables, along with dissolved oxygen; pH and light transmittance were of marginal importance under the various analyses.

The weighted group means of the variables for December-January are shown in Table 15. Site group 1 was characterized by having the lowest weighted means in primary productivity and chlorophyll a but the second highest assimilation ratio, all phytoplankton parameters. Group 1 also had the highest weighted means for temperature and salinity as well as the lowest weighted water means for oil and grease in surface, mid- and bottom water and sediment.

Table 16 shows one of the sets of coefficients of separate determination developed for the winter data. The numbers for each parameter are expressed as percentages of the "influence" among all parameters measured. The axes (columns) represent hypothetical plots in space, on which the combined values of interacting parameters would be located as new values. Generally, most of the significant values fall within the first two or three axes developed.

The coefficients in the first two axes in Table 16 show the importance of chlorophyll  $\alpha$  and of oil and grease in the water column and sediment.

Group 5 in this analysis included the inner channel stations, which were clearly separated on the basis of the highest weighted means for productivity and chlorophyll  $\alpha$  and the lowest assimilation ratio, as well as the lowest salinity and dissolved oxygen and lowest temperature. Group 5 also had the highest oil and grease in surface and bottom water and second highest mean content in mid-water and sediment.

The Two Way Table showed distinct gaps in the species composition in Group 5.

Group 3 sites were clearly isolated in this analysis only on the basis of the highest weighted means for mid-water and sediments for oil and grease, and the lowest pH.

Group 2 overlapped Group 1 spatially and in parameter means and ranges. Group 2 had the highest mean dissolved oxygen and lowest pH and light transmittance. Group 4 sites also were not clearly separated. They were distinguished only by having the highest assimilation ratio and percent of light transmittance.

It must be emphasized that there is always the possibility that some parameters not measured in the present analyses could alter these groupings and achieve further separations or characterizations if they were included. The station groupings remained generally similar in the various analyses tested, with only minor shifts of single sites from one group to another. The important coefficients were the same, although the values were adjusted according to the number of variables included.

÷

Figure 75 presents the data on the number of species and number of individuals per cubic meter at each station, as well as the Shannon-Weiner Diversity Index calculation for the period.

April, 1977. Classification of species groups showed four site groupings in the area (Figures 76-78) in April, three of which had considerable overlap. The TWT showed distinct gaps in the species composition of each group. Tables 17 and 18 present the weighted means for the site groups and the coefficients of separate determination, respectively. Based on the coefficients (Table 18), primary productivity, dissolved oxygen and salinity were the most important natural parameters; oil and grease in the water surface was also important, even though levels were low. Temperature and pH were apparently of lesser importance.

Group 2, isolated as station UO23, had the highest weighted means for primary productivity, salinity and pH, and the lowest mean dissolved oxygen (perhaps associated with the productivity). It also had the second lowest weighted mean for water surface oil and grease and the lowest temperature.

Groups 3 and 4 were composed of stations close to the <u>Sansinena</u> site, and probably the zooplankton reflect changes in the bottom oil residue associated with salvage operations. Group 3 had the second lowest weighted means for salinity, dissolved oxygen and pH, and the lowest weighted mean light transmittance and productivity. However, Group 3 had the highest mean surface water oil and grease levels and highest temperature. July, 1977. Classification techniques resulted in four groupings (Figures 80-82). The TWT shows the reduced numbers of species and gaps in distribution.

In July the zooplankton was clearly dominated by productivity, chlorophyll a and assimilation ratios. Turbidity may have been due to phytoplankton. The weighted means for one analysis are shown in Table 19.

Group 1 stations were intermediate, having second highest weighted means for salinity, pH, light transmittance and oil and grease in surface waters. It was, however, lowest in dissolved oxygen, and next lowest in temperature, and was median in phytoplankton parameter means as well.

Group 2 stations were highest in weighted means for dissolved oxygen, perhaps indicating a phytoplankton bloom, and in salinity, and second highest in temperature. They were second lowest in pH, light transmittance and surface water oil and grease. However, they were first in productivity and assimilaion ratio, probably the determining factors.

Group 3 had the lowest weighted means for salinity and temperature and highest for pH, light, and surface water oil and grease. It was second lowest in dissolved oxygen. The three stations in Group 3 were clustered next to the pier. In July, differences in oil and grease in the water column were small and bar graph data showed extensive overlap. Once again phytoplankton clarified this group, with the lowest productivity and assimilation ratio, and the highest chlorophyll a and light transmittance. While surface water oil and grease showed no importance, when the analyses were re-run with mid- and bottom water concentrations included those coefficients showed some importance. They were still outweighed by the phytoplankton characters. The coefficients for two analyses are compared in Table 20.

Group 4 stations were physically isolated. They shared lowest chlorophyll *a* values and second highest productivity and assimilation ratio. They were also separated slightly by the highest temperature, the second lowest salinity, lowest pH, and lowest light transmittance. The lowest surface oil and grease apparently was not an important factor, since differences were so small in the physical variables. Interestingly, the map of groupings resembles the distribution of oil and grease shown in Chapter II (Figures 14 to 17). The number of species and counts are presented in Figure 81, along with the Shannon-Weiner Diversity Index. Counts were up in a few locations, as was diversity.

<u>November, 1977.</u> In November, as in previous months, phytoplankton parameters of productivity, chlorophyll  $\alpha$ , and assimilation ratio dominated group separations of zooplankton that otherwise could not be clearly made. When temperature and phytoplankton measurements were all omitted from the data, weighted discriminant analysis produced weak separations, with overlapping bar graph data, based on salinity, dissolved oxygen and pH. Overlap was extensive in all oil and grease data, except for surface water where Groups 2 and 3 were separated by that factor, but Group 1 overlapped both in range.

When phytoplankton parameters alone were eliminated from the analysis, temperatures appeared to be much more definitive in separating the groups

in November. Air temperature had extreme ranges inland - 10C(50F) to 32C(90F). Water temperatures were unusually high for the period - 17C(63F) to 19C(66F). Generally water temperatures have dropped below that level into the 14-15C range by November. This, along with some rainfall, could affect the diversity as well as total numbers; certainly the combination of temperature extremes with pollutants would affect plankton populations. Groupings were tupical of inner slip-deep channel-shoaling area divisions, without the anomalous patterns previously observed which probably were indications of the impact of the spill, however.

In the analysis presented, Figure 84 shows one set of site groupings developed, along with the Two Way Table (Figure 85) and dendrogram of sites (Figure 86). The weighted means used in these figures are in Table 21.

Site group 1 was characterized by highest weighted mean productivity and assimilation ratio and highest pH, with the lowest weighted mean light transmittance and temperature. Site group 2 had highest weighted means for salinity, dissolved oxygen, light transmittance and oil and grease in surface waters. However, the most important parameters were probably the low weighted means for productivity and chlorophyll a.

Group 3, the inner channel stations, had the highest weighted mean temperature values but lowest weighted means for salinity, dissolved oxygen, pH and surface oil and grease. Species diversity did not change appreciably in November (Figure 87) but the counts per cubic meter appeared to have increased, especially at the inner slip stations.

Table 22 gives comparisons of two different sets of coefficients of separate determination for November, based on changing the parameters selected for the weighted discriminant analysis. In most cases it can be seen that the important coefficients (higher values) remain important (above 5.0, perhaps). However, the comparative values change as more parameters are introduced. Salinity, temperature and dissolved oxygen in particular dropped when phytoplankton parameters were introduced.

The site groups could be altered by various adjustments in the species included and the counts. However, in each case tested the inner stations UO1 and UO2 were together, the sites UO10 and UO11 at the <u>Sansinena</u> dock remained together, and the shoaling area of the outer harbor clustered into one or more site groups. Certain stations changed groups more readily. Stations UO3, UO6, UO7, UO8 and UO21 shifted about; one might assume that less definitive relationships occurred at these stations. Certainly the testing carried out indicated that, while flexibility was seen, the trends were consistent.

Summary. In examining the multivariate analyses, it must be remembered that the significance is not validated for the weighted discriminant method. Comparison of bar graph data for each separate parameter with the weighted discriminant analysis plots gives a good indication of interactions among the parameters. There is always the possibility that factors other than those measured are responsible, at least in part, for the results. In December and January, unusually high numbers of rare species occurred in the harbor but low total numbers of zooplankton were seen. Phytoplankton parameters were the most important factors, followed by oil and grease in the water column. For the rest of 1977 species diversity was low but numbers of individuals rose well above usual counts in the outer harbor.

In April and July, phytoplankton furnished the dominant parameters, with oil and grease and temperature also showing lesser separations.

November groupings were largely determined by phytoplankton and temperature; lower coefficients and overlap led to the hypothesis and tentative conclusion that oil was no longer toxic to the zooplankton.

Bar graph data of abiotic variables and nutrients are presented, according to the plankton station groupings by season at the end of this section (Figures 88 to 99). If separations were made with bar graphs on the basis of individual parameters rather than by coefficients, each might show some means and ranges that would separate one group from another. In many instances, however, there was considerable overlapping. The multiple discriminant techniques using weighted variables show the interactions or interrelationships among the physical and biological parameters.

WEIGHTED GROUP MEANS

DISCRIMINANT ANALYSIS \* JANUARY 1977 UNION OIL PLANKTON DATA

|     | OIL PLANKTON DATA              |             | SIT       | С<br>С<br>Ш<br>Ш | Р<br>S    |           |
|-----|--------------------------------|-------------|-----------|------------------|-----------|-----------|
|     |                                | -           | N         | 'n               | 4         | ß         |
| 1.  | PRODUCTIVITY                   | 3.7060      | 3.7345    | 3+7560           | 3-8029    | 3+8032    |
| Ň   | CHLUROPHYLL A                  | 0.8469      | 0.5594    | 0.8705           | 0.8627    | 0-8835    |
| m   | ASSIMILATION RATIO (A)         | 5.0877      | 5.0220    | 5-0158           | 5.1009    | 4.9361    |
| 4   | UIL + GREASE (WATER SURFACE)   | 1 - 1 7 6 4 | 1.1859    | 1.2095           | 1.2115    | 1.2270    |
| ហ   | DIL + GREASE (WATER MID-DEPTH) | 0.9281      | 0.9379    | 9+36*0           | 0.9358    | 0 + 9542  |
| ŵ   | Oll + GREASE (WATER BOTTOM)    | 0.7054      | 0.7174    | 0.7315           | 0.7174    | 0.7342    |
| ~   | Ull + GREASE (SED SURFACE)     | 2589-0408   | 2631.4275 | 2722.8613        | 2654+0935 | 2721-9185 |
| ຜ   | TEMPERATURE                    | 16.7309     | 16.7251   | 16.6888          | 16.7094   | 16.6552   |
| •   | SALINITY                       | 1410.Eč     | 33.0135   | 32 - 9865        | 32.9729   | 32+9451   |
| 10. | DISSULVED DXYGEN               | 7.2936      | 7.3064    | 7.2958           | 7.2413    | 1,2297    |
| 11. | Hđ                             | 7.6978      | 7.6859    | 7.7009           | 7.6868    | 7.0948    |
| 12. | TRANSMITTANCE                  | 71-8427     | 71.2326   | 71.5979          | 72.1221   | 72.0549   |

ĩ

•

i k

.

(AXES IN COLUMNS) # # COEFFICIENTS OF SEPARATE DETERMINATION (X 100/SUM(ABS VALUE)) DISCRIMINANT ANALYSIS + JANUARY 1977 UNION DIL PLANKTON DATA

| 5        | UIL PLANNIUN DALA |               |          | AXES           |              |
|----------|-------------------|---------------|----------|----------------|--------------|
|          |                   |               |          | 2              | m            |
| -        | PRODUCTIVITY      |               | 9<br>9   | 0.7            | 1.7          |
| N.       | снгокарнугг а     |               | 20.7     | 2.6            | 1.6          |
| m.       | ASSIMILATION RATI | 0 (A)         | 6+2      | رز<br>۱        | 8.2          |
| 4        | 01L + GREASE (WAT | ER SURFACE)   | 5+9      | £•0            | 9•S          |
| <b>.</b> | UTL + GREASE (WAT | ER MID-DEPTH) | 3.6      | 35.7           | 3.2          |
| \$       | UTL + GREASE (WAT | ER BOTIOM)    | 6.7      | 7.9            | 0.0          |
| 7.       | 01L + GREASE (SED | SURFACE)      | 12.4     | 11.3           | 0•6          |
| н<br>Э   | TEMPERATURE       |               | 3.5      | 17-9           | 0 <b>•</b> E |
| •<br>•   | SALINITY          |               | 13.9     | 0.2            | 12.1         |
| 10.      | DISSOLVED OXYGEN  |               | 9 • 5    | 5•2            | 12.2         |
| 11.      | Ηd                |               | 1 - 4    | 11.6           | 24 • 2       |
| 12.      | TRANSMITTANCE     |               | ត<br>• 5 | ()<br>()<br>() | 16.3         |

WEIGHTED GROUP MEANS

WEIGHTED DISCRIMINANT ANALYSIS \* UNION OIL \* APRIL, 1977

GROUPS

SITE

|    |                              | -       | N       | 'n      | 4       |
|----|------------------------------|---------|---------|---------|---------|
| -  | SALINITY                     | 30.8251 | 30+8779 | 30.8057 | 30.8037 |
| Ň  | DISSOLVED DXYGEN             | 5.2790  | 5.0919  | 5+2529  | 5.4721  |
| 'n | Hd                           | 8.0101  | 8.0116  | 8.0097  | 8.0093  |
| 4  | TURBID11Y                    | 62.5462 | 62.7082 | 61.8597 | 63-0707 |
| ÷. | PRODUCT IVITY                | 6.5477  | 6-8599  | 6.4235  | 6+5325  |
| \$ | CHLORGPHYLL A                | 6110-0  | 0.0108  | 0.0131  | 0.0142  |
| •  | UIL + GREASE (WATER SURFACE) | 0.1525  | 0+1436  | 0.1596  | 0+1434  |
| 60 | TEMPERATURE                  | 15-8282 | 15.8209 | 15.8339 | 15+8231 |

i

I.

)

•

;

ł

į

à

(AXES IN COLUMNS) COEFFICIENTS OF SEPARATE DETERMINATION (X 100/SUM(ABS VALUE)) \*\* WEIGHTED DISCRIMINANT ANALYSIS # UNION DIL \* APRIL, 1977

| 4.6      | 43.4          | 1 • I | 12+2      | 6.7          | 2.8          | 20-2            | 1-6         |
|----------|---------------|-------|-----------|--------------|--------------|-----------------|-------------|
| 19.0     | 21.2          | 11.2  | 0+5       | 34.9         | 0*6          | 0 - S           | 4 • M       |
|          | YGEN          |       |           |              | *            | (WATER SURFACE) |             |
| SALINITY | DISSOLVED OX1 | 1     | TURBIDITY | PRODUCTIVITY | כארסאסאארר ז | OIL + GREASE    | TEMPERATURE |
| <u>.</u> | *<br>N        | m     | 4.        | 5.           | o            | 2               | •<br>0      |

ŧ

| DISCR     | IMINANT ANALYSIS * JULY 1977<br>Dil Plankton data |         | SITE G  | ROUPS   |         |
|-----------|---------------------------------------------------|---------|---------|---------|---------|
|           |                                                   | I       | ŝ       | Ð       | 4       |
| 1.        | PRODUCTIVITY                                      | 16.2113 | 16+5545 | 15.7533 | 16.2461 |
| •<br>•    | CHLORDPHYLL A                                     | 2+5432  | 2.5301  | 2-6037  | 2.5217  |
| т<br>Р    | ASSIMILATION RATIO (A)                            | 95939   | 2.0144  | 1-9470  | 2.0038  |
| 4         | SALINITY                                          | 32+9451 | 32+9569 | 32+9315 | 32-9400 |
| ŝ         | DISSOLVED DXYGEN                                  | 6.9424  | 7.0708  | 6.9634  | 7.0014  |
| <b>\$</b> | Н                                                 | 7.7955  | 7.7918  | 7.8154  | 7.8022  |
| 7.        | TURBIDITY                                         | 63.5289 | 62.6251 | 63-8017 | 62.5388 |
| 8         | OIL + GREASE (WATER SURFACE)                      | 0.2938  | 0.2893  | 0.2972  | (*590]  |
| •         | TEMPERATURE                                       | 16.6616 | 16.6622 | 16.6545 | 16.7148 |

i i

\$

5

ļ

i.

÷

TABLE 19

WEIGHTED GROUP MEANS

(AXES IN CULUMNS) \* TABLE 20 Coefficients of Separate Determination (x 100/Sum(ABS VALUE)) DISCRIMINANT ANALYSIS + JULY 1977 UNION OIL PLANKTON DATA

| ö        | OIL PLANKTON DATA            |              | AXES |      |
|----------|------------------------------|--------------|------|------|
|          |                              | -            | ~    | m    |
| -        | PRODUCTIVITY                 | 29.8         | 17.3 | 43.1 |
| Å.       | CHLORUPHYLL A                | 19.5         | 21.9 | 5 .7 |
| 'n       | ASSIMILATION RATIO (A)       | 39.7         | 39.4 | 24.5 |
| 4        | SALINITY                     | 0.6          | 0*0  | 0.1  |
| <b>.</b> | DISSOLVED OXYGEN             | 0 <b>.</b> 4 | 5*0  | 3•2  |
| •        | Hď                           | 2.9          | 0.2  | 0.2  |
| 7.       | TURBIDITY                    | 5-6          | 19.4 | 13.6 |
| 8        | OIL + GREASE (WATER SURFACE) | 0•6          | 6•0  | 1.0  |
| •        | TEMPERATURE                  | 8 + C        | 0+1  | 8.7  |
|          |                              |              |      |      |

WEIGHTED DISCRIMINANT ANALYSIS \* UNION OIL PLANKTON DATA \* JULY, 1977

| 4      | PRODUCTIVIT' |          |            | 22.8  | 13.7        | 0-2     |
|--------|--------------|----------|------------|-------|-------------|---------|
| 8<br>8 | СНГОВОРНУЦС  | <        |            | 15.3  | 22.0        |         |
| • E    | ASSIMILATION | N RATIO  | (7)        | 1.2   | 36.0        |         |
| 4.     | SAL IN ITY   |          |            | 5 • C | 0.1         | 0       |
| +<br>م | DISSOLVED D  | A GEN    |            | 2.8   | 0.1         | 13.4    |
| ÷9     | Hd           |          |            | 26.5  | 0•2         | 9.24    |
| 7.     | TURBIDITY    |          |            | 1 - 1 | 8 - 1       |         |
| 8.     | TEMPERATURE  |          |            | 8 • 6 | 1.8         | 1 0 - V |
| •      | OIL + GREASE | E (WATER | SURFACE)   | 1.0   | 0 • 0       |         |
| 10.    | OIL + GREASE | E (WATER | MID-DEPTH) | 5.6   | 16.1        | 15.0    |
| 11.    | 01L + GREASE | E (WATER | BOT TOM)   | 12.7  | <b>0.</b> 0 | 1 - 8   |

WEIGHTED GROUP MEANS

DISCRIMINANT ANALYSIS # NOVEMBER 1977 Union Oil Plankton Data

|          |                              | 7        | 2         | M)      |
|----------|------------------------------|----------|-----------|---------|
| 1.       | PRODUCTIVITY                 | 1 = 8344 | 1.8194    | 1.8319  |
| Ň        | CHLOROPHYLL A                | 4.9866   | 4.8763    | 5.0806  |
| ÷.       | ASSIMILATION RATID (A)       | 1.1383   | 1.1310    | 1-1042  |
| 4        | SALINITY                     | 3.5480   | 3.5481    | 3+5478  |
| ŝ        | DISSOLVED DXYGEN             | 5.3566   | 5.3649    | 5+2188  |
| •        | Hd                           | 8.3996   | 8-3984    | 6.3917  |
| *        | TRANSMITTANCE                | 50.9983  | 52 • 2848 | 51-1873 |
| <b>.</b> | DIL + GREASE (WATER SURFACE) | 2+3795   | 2•3931    | 2.0455  |
| <b>.</b> | TEMPERATURE                  | 18.3402  | 18.3796   | 38.4512 |

¥

4

•

•

TABLE 22A

(AXES IN COLUMNS) ¥ CGEFFICIENTS DF SEPARATE DETERMINATION (X 100/SUM(ABS VALUE))

★★ UNION DIL PLANKTON DATA ★ NUVEMBER 1977 +\* \*\* WEIGHTED DISCRIMINANT ANALYSIS \* GROUPS FROM DENDROGRAM \*\*

1 2

TABLE 22B

(AXES IN COLUMNS) ŧ COEFFICIENTS DF SEPARATE DETERMINATION (X 100/SUM(ABS VALUE)) WEIGHTED DISCRIMINANT ANALYSIS \* UNION DIL \* NOVEMBER, 1977

N

| 0.0      | > /<br>> /       | 0.01 | 17.6 | 10.9    | 1.9                          | 56.4        |
|----------|------------------|------|------|---------|------------------------------|-------------|
| 14-1     | 1 VC             |      | 20.7 | 0.<br>5 | 27.4                         | 10.6        |
| SALINITY | DISSOLVED DXYGEN | Hd   |      |         | 01L + GREASE (WATER SURFACE) | TEMPËRATURE |
| -        | N,               | m    | 4    | •       | ŝ                            | ê.          |

TABLE 22C

(AXES IN COLUMNS) CUEFFICIENTS OF SEPARATE DETERMINATION (X 100/SUM(ABS VALUE)) \*\*

DISCRIMINANT ANALYSIS # NÜVEMBER 1977 Union dil Plankton" data

A X E S 1 2

| :      | PRODUCT IV ITY               | 9°0  | 37.5 |
|--------|------------------------------|------|------|
| Å.     | СНСОВОРНУСК А                | 19.0 | 42.9 |
|        | ASSIMILATION RATIO (A)       | 22.4 | 12.0 |
| *<br>• | SALINITY                     | 6+2  | 0.5  |
| ŝ      | DISSOLVED UXYGEN             | 14.7 | 0.0  |
| ŝ      | Б.Н.                         | 15.9 | 0.7  |
| *      | TURBIDITY                    | £•0  | 2.7  |
| •<br>د | UIL + GREASE (WATER SURFACE) | 14.8 | 0.4  |
| *      | TEMPERATURE                  | 3+2  | m•₩  |

.

TABLE 22D

(AXES IN CULUMNS) WEIGHTED DISCRIMINANT ANALYSIS # UNION DIL PLANKTON DATA # NOVEMBER, 19.77 COEFFICIENTS OF SEPARATE DETERMINATION (X 100/SUM(ABS VALUE)) \*\*

m

N

-

| 39+6 42+2 | 3.5 26.0    | 32+3 21+7    | 5.0 2.4 | 2.8 0.7 | 3.3 0.2 | 0.1 3.1 | 0.1 5.0 | 3.1 1.9  | 2.0 7.9    | 0"0 0"0 |
|-----------|-------------|--------------|---------|---------|---------|---------|---------|----------|------------|---------|
| 11.6      | <b>6</b> •6 | 33.4         | 5.3     | 16.8    | 17.6    | 0*0     | 0.7     | 0°E      | 0.9        | 0.8     |
|           |             | ( <b>A</b> ) |         |         |         |         |         | SURFACE) | MID-DEPTH) | BOTTON) |
|           | _           | RATIO (      |         | GEN     |         |         |         | (WATER   | ( WATER    | ( NATER |
| TIVITY    | DHYLL A     | LATION       | TY      | VED OXY |         | YTT.    | ATURE   | GREASE   | GREASE     | GREASE  |
| naa       | LORC        | SIMI         | L I N I | SSOL    |         | RBID    | MPER    | +<br>_   | +          | +<br>   |
| g         | H<br>U      | A S          | SA      | 10      | đ       | 1<br>D  | TE      | 0        | 10         | ΪO      |
| -         | N.          | т.<br>т.     | +       | 'n      | ÷       | *       | •       | •        | 10.        |         |













| FIGURE 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| UNION DIL PLANKTON DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A, JANUARY 1977.                                                                                                                                         |
| Coincidence numbers,<br>transformed and standardized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PS 1 2 34 5<br>U U U U U<br>0 0 0 0<br>2 1 1 0 0<br>1 3 9 3 1<br>7 7 7 7 7<br>7 7 7 7<br>0 0 0 0<br>1 1 1 1<br>1 1 1<br>0 0 0 0<br>0 0 0<br>0 0 0<br>0 0 |
| * > .75 to 1<br>+ > .5 to .75<br>- > .25 to .50<br>. > 0 to .25<br>blank 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UUUUUU<br>GGQQQ<br>11177537<br>77777777<br>77777777<br>000000<br>11111111<br>000000<br>00000                                                             |
| ACARTIA TONSA<br>CHORDATA-UROCHORDATA LARVACEA<br>ANIMAL CHAETOGNATHA<br>ECHINODERMATA OPHIUROIDEA<br>PODON POLYPHEMDIDES<br>PARACALANUS PARVUS<br>CORYCAEUS ANGLICUS<br>DECAPODA BRACHYURA<br>CHORDATA DSTEICHTHYS<br>DITHONA SIMILIS<br>ANIMAL BRYOZOA (ECTOPROCTA)<br>CRUSTACEA THORACICA<br>EVADNE NDRDMANNI<br>OITHONA PLUMIFERA<br>CTENDCALANUS VANUS<br>PENILIA AVIROSTRIS<br>CALANUS HELGOLANDICUS<br>CDRYCAEUS AMAZONICUS<br>ACARTIA DANAE<br>HYDROZOA SIPHONOPHORA<br>MECYNOCERA CLAUSI<br>CNIDARIA (COELENTERATA) HYDROZ<br>CALDCALANUS SIYLIREMIS<br>CHORDATA-URDCHORDATA THALIACEA<br>ANNELIDA POLYCHAETA<br>DECAPODA ANOMURA-PORCELLANIDAE<br>CLAUSCALANUS FURCATUS<br>DNCAEIDAE DNCAEA<br>TEMORIDAE TEMDRA<br>EVADNE SPINIFERA<br>ACARTIA CLAUSI<br>PSEUDCALANIDAE CLAUSOCALANUS<br>CDRYCAEUS GIESBRECHTI<br>RHINCALANUS NASUTUS<br>ARTHROPDA CRUSTACEA<br>EUCALANUS CRASSUS<br>ECHINODERMATA ECHINDIDEA<br>LABIDOCERA TRISPINDSA<br>MOLLUSCA CARIDEA |                                                                                                                                                          |

UD15770100 UD21770100 U011770100 0010770100 U017770100 U019770100 U015770100 UD03770100 UD23770100 001770100 U007770D0 STN/DATE UNION DIL PLANKTON DATA NORMAL ANALYSIS, JANUARY 17, 1977 . . . . . . . . . . . . 60 40 20 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \*\*\*\*\*\*\*\*\* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \*\*\*\*\*\*\*\*\*\* . . . . . . . . . . . . . . . . . . . ........ . . . . . . . . . . . . . . . . . . . . . . . . . . ..... • • • • • • : ••••• . . . . . . . . . . ..... • ٠ ....... • • . ...... ٠ ٠ • . . . . . . • • . . • . 80 08 X DISTANCE 100

FIGURE 74




| FIGURE 77                                                                                                                                                                                                                                                                                                                                                           |       |                       |                          |                  | _                          |                       | -                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------|--------------------------|------------------|----------------------------|-----------------------|-----------------------------------------------------|
| UNION OIL PLANKTON D                                                                                                                                                                                                                                                                                                                                                | ATA.  | APRI                  | <u> </u>                 | . 8              | , 1                        | 97                    | <u>· ·</u>                                          |
| STATION GF                                                                                                                                                                                                                                                                                                                                                          | 20UPS | •                     | 1                        | 2                | 3                          | 4                     |                                                     |
| Coincidence numbers,                                                                                                                                                                                                                                                                                                                                                | 1     | 7<br>7<br>0<br>4<br>1 | 7<br>7<br>4<br>1         | 7<br>7<br>0<br>4 | 7<br>7<br>6<br>4<br>1      | 77041                 | 7<br>7<br>0<br>4<br>1                               |
| transformed and standardized                                                                                                                                                                                                                                                                                                                                        |       | 8                     | 8                        | 8                | <sup>8</sup>               | δ                     | 8                                                   |
| * > .75 to 1<br>+ > .5 to .75<br>- > .25 to .50<br>> 0 to .25                                                                                                                                                                                                                                                                                                       |       | U<br>0<br>1<br>9      | U<br>0<br>1<br>3         | U<br>0<br>2<br>3 | U<br>D<br>2<br>2           | U<br>0<br>6           | U<br>0<br>1<br>1                                    |
| blank 0                                                                                                                                                                                                                                                                                                                                                             |       | 7<br>7<br>4<br>1<br>8 | 777<br>770<br>441<br>88  |                  | 7<br>7<br>9<br>4<br>1<br>8 | 7<br>7<br>4<br>1<br>8 | 77700418                                            |
|                                                                                                                                                                                                                                                                                                                                                                     |       | U<br>0<br>2           | U U<br>0 0<br>2 1<br>1 5 |                  | U<br>0<br>1<br>0           | U<br>0<br>3           | U U<br>0 0<br>0 0<br>8 7                            |
| ACARTIA TONSA<br>LABIDOCERA TRISPINOSA<br>CHORDATA OSTEICHTHYS<br>EVADNE NORDMANNI<br>PARACALANUS PARVUS<br>PODON POLYPHENOIDES<br>CALANUS HELGOLANDICUS<br>CLAUSOCALANUS FURCATUS<br>CORYCAEUS AMAZONICUS<br>MICROSETELLA ROSEA<br>OITHONA SIMILIS<br>RHINCALANUS NASUTUS<br>CORYCAEUS ANGLICUS<br>OITHONA OCULATA<br>TORTANUS DISCAUDATUS<br>EUTERPINA ACUTIFRONS |       | + 4<br>+ 4<br>        |                          | ×× ×××××         | -+<br>+<br>-X<br>X         | + + × × × ×           | ++×<br><br>+-×<br>+-×<br>(×××<br>+-×<br>(×××<br>+-× |

ŧ

1

ſ

FIGURE 78. Union dil Plankton data Normal Analysis, april 18, 1977.

770418 UD02 770418 UD19 770418 UD13 770418 UD15 770418 U021 770418 UD23 770418 UD10 770418 UD22 770418 UD03 770418 UD06 770418 UD08 770418 UD11 STN/DATE ۰: . . . . . . . . . . . . . . . . . . . . . ........ : . . . . . . . . . . . . ......... . . . . . . . . . . . . . . . . . . • • • • • • • . . . . . . . . ...... ..... ...... 20 40 20 ..... ..... • \* \* \* \* . • • , . : ..... : . • : \* \* \* \* \* 60 • : 80 % DISTANCE 100

134

770418 UD07

•••••

.....





| STATION                                                                                                                                                                   | GROUPS |                                 | 1                               | 2                          | 2                          | 3                          |                            | 4                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------|---------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| Coincidence numbers,                                                                                                                                                      | 1      | 7<br>7<br>7<br>7<br>7<br>1<br>8 | 7<br>7<br>7<br>0<br>7<br>1<br>8 | 7<br>7<br>0<br>7<br>1<br>8 | 770718                     | 7<br>7<br>0<br>7<br>1<br>8 |                            | 77777000<br>777007711888   |
| * > .75 to 1<br>+ > .5 to .75<br>- > .25 to .50                                                                                                                           |        | U<br>0<br>0<br>8                | U<br>0<br>2<br>3                | U<br>0<br>1<br>5           | U<br>0<br>1<br>3           |                            |                            | U U<br>O C<br>D C<br>1 3   |
| . > 0 to .25<br>blank 0                                                                                                                                                   |        | 7<br>7<br>7<br>7<br>7<br>1<br>8 | 777<br>707<br>18                | 7<br>7<br>1<br>8           | 7<br>7<br>7<br>7<br>1<br>8 | 7<br>7<br>7<br>7<br>1<br>8 | 7<br>7<br>0<br>7<br>1<br>8 | 7<br>7<br>0<br>7<br>1<br>8 |
|                                                                                                                                                                           |        | U<br>0<br>2                     | U 1<br>0 1<br>7 7               | U<br>D<br>1<br>9           | U<br>0<br>2<br>2           | U<br>0<br>6                | Մ<br>0<br>1<br>0           | U<br>0<br>2<br>1           |
| ACARTIA TONSA<br>PARACALANUS PARVUS<br>EVADNE NORDMANNI<br>PODON POLYPHEMOIDES<br>CORYCAEUS ANGLICUS<br>OITHONA SIMILIS<br>CALOCALANUS STYLIREMIS<br>CHORDATA OSTEICHTHYS |        | +.<br>                          |                                 | + - × + + ×                | <br>                       | + +                        | +×<br>**<br>~+<br>+        | +*                         |
| ISCHNOCALANUS TENUIS<br>LABIDOCERA TRISPINOSA<br>GITHONA PLUNIFERA<br>ACARTIA CLAUSI<br>GITHONA GCULATA<br>EUTEPENNA ACUTIFEONS                                           |        | -                               | ++<br>X                         | *<br>+                     | ++•<br>**                  | 4<br>F                     | 4                          | ×-<br>×)                   |

FIGURE 82 Union oil plankton data Normal Analysis, July 18, 1977.

| X DISTANCE                            | STN/D  | ATE     |
|---------------------------------------|--------|---------|
| 100 80 60 40 20                       |        |         |
|                                       | 770718 | UD 0 2  |
|                                       | 770718 | 0008    |
|                                       | 770718 | 1000    |
|                                       | 770718 | U023    |
|                                       | 770718 | U019    |
|                                       | 770718 | U015    |
|                                       | 770718 | V022    |
|                                       | 770718 | UD13    |
| • •                                   | 770718 | 9000    |
|                                       | 770718 | 1100    |
| · · · · · · · · · · · · · · · · · · · | 770718 | 0 I ON  |
|                                       | 770718 | UD 0 1  |
|                                       | 770718 | UD21    |
|                                       | 770718 | E 0 0 N |





140

ļ

| STATION GROUPS                                                                                                                                                                                                                                                    | 1                                                                                                | 2                                              | 3                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------|
| Coincidence numbers,<br>transformed and standardized                                                                                                                                                                                                              | 7777<br>7777<br>1111<br>111<br>000<br>1111                                                       | 7<br>1<br>1<br>0<br>1<br>U                     | 777<br>777<br>11<br>11<br>00<br>11                   |
| <pre>* &gt; .75 to 1 + &gt; .5 to .75 - &gt; .25 to .50 . &gt; 0 to .25 blank 0</pre>                                                                                                                                                                             | 0 0 0<br>0 1 2<br>8 9 2<br>7 7 7<br>7 7 7<br>1 1 1<br>1 1 1<br>0 0 0                             | 0<br>2<br>1<br>7 7<br>7 7<br>1 1<br>1 1<br>0 0 | 0 0<br>0 0<br>1 3<br>7 7<br>7 7<br>1 1<br>1 1<br>0 0 |
|                                                                                                                                                                                                                                                                   | 111<br>UUU<br>000<br>011<br>753                                                                  | 1 1<br>U U<br>0 0<br>1 1<br>1 0                | 1 1<br>0 0<br>0 0<br>2 6                             |
| EUTERPINA ACUTIFRONS<br>OITHONA SIMILIS<br>CORYCAEIDAE CORYCAEUS<br>ACARTIA CLAUSI<br>ACARTIA TONSA<br>PARACALANUS PARVUS<br>PENILIA AVIROSTRIS<br>CORYCAEUS ANGLICUS<br>LABIDOCERA TRISPINOSA<br>EVADNE NORDMANNI<br>PODON POLYPHEMOIDES<br>CHORDATA OSTEICHIMYS | ×<br>×<br>×<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+<br>+ | X-+<br>+X-<br>-X+<br>-X+<br>*                  | ***************************************              |
| OITHONA OCULATA<br>PSEUDODIATOMUS EURYHALINUS<br>CALANUS HELGOLANDICUS<br>CALOCALANUS STYLIREMIS<br>OITHONA SPINIROSTRIS<br>CORYCAEUS AMAZONICUS<br>OITHONA PLUMIFERA<br>EVADNE SPINIFERA                                                                         | +<br>++<br>X<br>X<br>X<br>X<br>X                                                                 | +¥+<br>×<br>×<br>++                            | +<br>: X                                             |

FIGURE 85 UNION OIL PLANKTON DATA, NOVEMBER 1, 1977. FIGURE 8.6 Union dil plankton data Normal Analysis, november 1, 1977.

| X DISTANCE        | STN/D  | щ<br>Т   |
|-------------------|--------|----------|
| 100 80 60 40 20 0 |        |          |
|                   | 771101 | 1000     |
|                   | 771101 | 000      |
|                   | 771101 | U015     |
|                   | 771101 | U019     |
|                   | 771101 | U013     |
|                   | 771101 | U022     |
|                   | 771101 | 1100     |
|                   | 771101 | UD21     |
|                   | 771101 | 0100     |
|                   | 771101 | 1001     |
|                   | 771101 | U002     |
|                   | 771101 | 000<br>1 |
|                   |        |          |

142

771101 UD06



# ABIOTIC PARAMETERS



.



TEMPERATURE (plankton groupings) (RANGE & MEAN ± 2 S.E.)



SALINITY (plankton grouping=) (RANGE & MEAN ± 2 S.E.)



## FIGURE 90

DISSOLVED OXYGEN (plankton groupings) (RANGE & MEAN ± 2 S.E.)





### FIGURE 91

## pH (plankton groupings) (RANGE & MEAN ± 2 S.E.)





TURBIDITY (plankton groupings) (RANGE & MEAN ± 2 S.E.)



PRODUCTIVITY (plankton groupings) (RANGE & MEAN ± 2 S.E.)



CHLOROPHYLL a (Plankton grouping=) (RANGE & MEAN ± 2 S.E.)









NITRITE (RANGE & MEAN ± 2 S.E.)



## FIGURE 97 Plankton groupings

NITRATE (RANGE & MEAN ± 2 S.E.)



ł



PHOSPHATE (RANGE & MEAN ± 2 S.E.)







#### D. MEROPLANKTON

## Introduction

Studies of the environmental impact of the <u>Sansinena</u> incident on the biota were well quantified for phytoplankton, zooplankton and benthic organisms. In other cases it was not possible to collect sufficient samples for quantification and subsequent computer analysis, either because of disruptions due to cleanup operations or because of limitations in the scope of work. Sampling of meroplankton was one such study.

The meroplankton consist of eggs, larvae and adults of organisms that are temporarily suspended in the water column, but will settle out and become sessile or attached at some stage in their life cycle. The use of settling racks that can be suspended in the water column above possibly polluted bottoms gives an evaluation of those organisms being brought into an area during one month by tides or reproducing nearby on fixed surfaces. Many of these organisms would not survive on the bottom, either because of pollution or because the soft substrate is inappropriate to them.

For seven years small slide boxes containing 25 glass microscope slides and screened front and back with plastic screen have been used in harbor studies (Soule and Soule, 1971; AHF, 1976). Changed monthly, they give a picture of reproduction and recolonization as well as a faunal inventory. Eggs and larvae are carried through the screens and settle on the slides or frame. Some predation does occur in that microenvironment, but the collections have proved to be more diverse in major categories than either the benthic or zooplankton sampling.

#### Procedures

Following the <u>Sansinena</u> explosion settling racks were placed at four stations in the vicinity. Containment and cleanup activities caused considerable difficulty, however. Sometimes it was not possible to reach locations to place or retrieve racks, and a number of racks were destroyed by cleanup work or storms during the months surveyed. The effort was suspended in August 1977 because of continued problems with destruction and with funding limitations (Figure 100).

#### Discussion and Results

The irregularity of placement and retrieval due to salvage efforts made exact quantification impossible, since there were variations in time exposed (due to lack of access) and a lack of comparability, where racks at particular sites were lost. Counts of colonial animals are given in grams or as presence-absence, where it is not possible to count accurately the number of individuals in hydroid, bryozoan, or tunicate colonies, for example.

<u>Prior Data</u>. Analysis of settling rack data for 1973 and 1974 (AHF, 1976) showed that the numbers of species or other entities (taxa) were lowest in the winter period but varied from year to year. There were, for example, only 18 taxa found from all racks from the harbor in the December-February

period in 1973, but 27 occurred in the same period in 1974. The summer period generally had the highest numbers of taxa, with a mean of 38 in both years for all stations. In some groups of organisms there are two periods of increase in species or in numbers, one in the spring around April, and another in the late summer -- early fall.

Examination of data at station A9 in 1976 prior to the <u>Sansinena</u> incident showed a low in March 1976 of 16 taxa, which increased to 22 in April but dropped back to 18 in August. October showed a considerable rise to 41 taxa, which dropped to 21 in November.

The occurrence of peak periods for reproduction is closely tied to temperature, and especially to temperature change rather than specific numbers. Apparently a rise (or fall) of several degrees in the water temperature serves as a reproductive "cue" to the metabolism to initiate maturing of eggs and sperm.

Post-Sansinena Data. In Table 23, data from some of the settling racks near the <u>Sansinena</u> are presented; the dates given are those at the end of an exposure period of approximately one month.

The total numbers of taxa showed an increase in April only at UO 3, whereas station UO10 showed a large increase in taxa in June and July, 1977. Station UO9 appeared to be reduced in species in comparison to UO10 in May and June.

Spirorbids dominated the racks in February 1977, along with copepods and, to some extent, *Mytilus*. Other polychaetes (*Ctenodrilus*) dominated in April, as well as increasing numbers of copepods. In May, the summer increase in numbers of individuals of copepods and amphipods began; large numbers of hydroids were present and *Mytilus* began to increase.

The June-July samples held large numbers of copepods and particularly amphipods; the amphipod Jassa falcata outnumbered all others. Mytilus was quite numerous in June but dropped considerably in July. Growth of the hydroid Obelia was very heavy in June, while the bryozoan Bugula neritina was present in some quantity in June and July and the tunicate Ciona was prominent in July.

Comparisons with data from station A2 across the main channel are of interest. In February fairly similar numbers of species and dominant organisms occurred at the UO stations and A2.

In April, A2 had nearly twice as many individuals as the maximum at the UO stations. Jassa falcata, which had been almost absent, returned to be the dominant arganism at A2, but remained scarce at UO stations.

In June, station A2 had over four times the number of organisms of any of the UO stations, but Jessa falcata had returned to UO stations as a dominant organism. The numbers at A2 remained much higher than at the UO stations throughout the sampling period through July, 1977.





160

Table 23.

ŀ

-

SANSINENA SETTLING RACK DATA

| 100 Sta.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           | 71 Feb   |               | 1        | APE. | 77         | 3 May 77 | 8 Ju   | <u>, 77</u> | 25 Jul. 77   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------|---------------|----------|------|------------|----------|--------|-------------|--------------|
| Organisma         Ol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           | UO St    | <del></del> . | បីរូ 🖳   | Sts. | · · ·      | CO Sta.  | 00 Sta | 1           | CO Sta.      |
| International Control (Control (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Organisms                                 | 01       | 03            | 01       | 03   | 10         | 09       |        |             | · <u>*</u> u |
| ANNELICA POLYCHAETA<br>Capitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellade<br>Tapitellad |                                           |          |               |          | Ţ    |            |          |        |             |              |
| Capitalidae<br>Inprintiza agrinomS321321916Chryeopetalidae<br>Palanatia bilida11481210Chryeopetalidae<br>Palanatia bilida11481210Chryeopetalidae<br>Phatomer provida<br>Tharson a provida<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<br>Dervileidae<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ANNELIDA POLYCHAETA                       |          |               |          | 1    |            |          | 1      |             |              |
| Chrysopatalidae       1       1       1       1       48       12       10         Chrysopatalidae       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Capitellidae                              | <u>د</u> |               | ,        | 1 12 |            | 2        |        | 19          | 16           |
| Chrysopetalide<br>Prisenorie Solice1481210Cirratulide<br>Chestoape sontha<br>Tharys 80.1111Cenodelilde<br>Chestoape sontha<br>Tharys 80.7557136219Cenodelilde<br>Sontatoreringe Tongic<br>opende<br>Sontatoreringe Tongic<br>opende22111Dorvilleide<br>Sontatoreringe Tongic<br>opende<br>Sontatoreringe Tongic<br>opende22111Neelde<br>Platymerie<br>Sontatoreringe Tongic<br>opende<br>sontatoreringe Tongic<br>opende<br>tongic<br>opende<br>tongic<br>opende<br>sontatoreringe Tongic<br>opende<br>sontatoreringe Tongic<br>opende<br>tongic<br>opende<br>tongic<br>opende<br>tongic<br>t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | japitella sapitara                        | ,        |               | •        |      |            | _        |        |             |              |
| Paisonotes Sollie       1       45       12       14         Cirestulidae       Chaetosore armatz       1       1       1       1       1         Cheetosore armatz       7       5       5       7       136       2       19       1         Creatilidae       2       2       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Chryspoetalidae                           |          |               |          | i i  |            |          |        |             | 1.0          |
| Cirretulidae       1       1       1       1         Chastoans sonta       7       5       5       7       136       2       19       1         Chastoans sonta       7       5       5       7       136       2       19       1         Dervilledae       7       5       5       7       136       2       19       1         Dervilledae       10       3       4       1       4       1         Merionidae       0phiodroms pugatiensis       4       1       4       1         Werionidae       0phiodroms pugatiensis       4       1       4       1         Ophiodroms pugatiensis       24       9       77       28       40       16       29       33         Ophiodroms pugatiensis       24       9       77       28       40       16       29       33         Ophiodroms pugatiensis       24       9       77       28       40       16       29       33       33         Ophiodroma pugatiensis       5       2       2       2       68       23       33       33       33       33       33       33       33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Paleanotue Sellie                         |          |               |          |      |            |          | 48     | 12          | 10           |
| Chierosone armatz<br>Chaetoane gracha<br>Thury Bp.<br>Clenodrilidae<br>Thury Bp.<br>Clenodrilidae<br>Thury Bp.<br>Clenodrilidae<br>Thury Bp.<br>Clenodrilidae<br>Thury Bp.<br>Clenodrilidae<br>Thury Bp.<br>Clenodrilidae<br>Thury Bp.<br>Clenodrilidae<br>Porty Droking pugettensis<br>Neteidae<br>Platynereie biognali-<br>Judata<br>Poly Phalaws Judata<br>Poly One Bp.<br>Tamidae Single<br>Poly One Bp.<br>Tamidae Jonanti<br>Judata Districe<br>Poly One Bp.<br>Tamidae Jonanti<br>Judata<br>Poly One Bp.<br>Tamidae Jonanti<br>Judata<br>Poly One Bp.<br>Tamidae Jonanti<br>Judata<br>Poly One Bp.<br>Spinotidae<br>Poly One Sp.<br>Conse Bp.<br>Spinotidae<br>Poly One Sp.<br>Spinotidae<br>Poly One Sp.<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spinotidae<br>Spin                                                                                                                                                                                                |                                           |          |               |          |      |            |          |        |             |              |
| Inscrights       Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |          |               |          | 1    |            |          |        |             |              |
| Tharpy Sp.         Ctenodrilide         Trandtile         Trandtile         JparyStrock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Chartenant republic                       |          |               |          | -    |            |          |        |             | 1            |
| Ctenddrilidae<br>Tenddrilie servatis75571362191Dorvilleidae<br>Sprindroch puertiis2214444Dorvilleidae<br>Sprindroch puertiis221444Hesionidae<br>Sprindroch puertiis249772840162933Ophelidae<br>Fuldia bioulata<br>Polyopthalmus pictus249772840162933Ophelidae<br>Fuldia bioulata<br>Fuldia sp.<br>Eunida sp.<br>Eunida sp.<br>Eunidae<br>Aarmadia disprine11520201036Polyopthalmus pictus5222103631Subellidae<br>Aarmadia disprine<br>Eunidae<br>Suberlidae<br>Aarmadia bionicats115201036Subellidae<br>Polyopta line<br>Polydors ign<br>Polydors ign<br>Bolydors ign<br>Bolydors ign<br>Bolydors ign<br>Bolydors ign135494Sprochidae<br>Polydors sp.<br>Sprochidae<br>Sprochidae<br>Sprochidae<br>Sprochidae<br>Sprochidae<br>Sprochidae<br>Sprochidae<br>Sprochidae<br>Sprochidae<br>Sprochidae<br>Sprochidae<br>Sprochidae<br>Sprochidae<br>Sprochidae<br>Sprochidae<br>Sprochidae<br>Sprochidae<br>Sprochidae<br>Sprochidae<br>Sprochidae<br>Sprochidae<br>Sprochidae<br>Sprochidae<br>Sprochidae<br>Sprochidae<br>Sprochidae<br>Sprochidae<br>Sprochidae<br>Sprochidae<br>Sprochidae<br>Sprochidae<br>Sprochidae<br>Sprochidae<br>Sprochidae<br>Sprochidae<br>Sprochidae<br>Sprochidae<br>Sprochidae<br>Sprochidae<br>Sprochidae<br>Sprochidae<br>Sprochidae<br>Spr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Thanya sp.                                |          |               |          |      |            |          | 1 1    |             |              |
| C Ctenddrilde servatie75571362191Dorvilleide<br>Jpanyotrocha puertiis221444Janyotrocha puertiis22144Janyotrocha puertina22144Janyotrocha puertina2497728401629Ophelide<br>Phidromus puertina249772840162933Ophelide<br>Phylodoctise<br>Phylodoctise<br>Juvnika sp.<br>Juvnika sp.<br>Fundae imprison249772840162933Phylodoctise<br>Phylodoctise<br>Phylodoctise<br>Serpuide<br>Ohne spling<br>Thore spling<br>Thore spling<br>Phylodoctise<br>Serpuide<br>Phylodoctise<br>Serpuide<br>Serpuide<br>Splindra spling<br>Thore spling<br>Phylodoctise<br>Splindra spling<br>Thore spling <br< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td></br<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |          |               |          |      |            |          | 1      |             |              |
| Transfer Live sepretize       1       5       5       1       130       2       1         Dorvilleidee<br>Jpanyornooka pugetzensis       2       2       1       4       1         Sontetoner nyoe longt-<br>sornte       2       2       1       4       1         Wereidee<br>Platymerie biognali-<br>suidta       24       9       77       26       40       16       29       32         Ophelidee<br>Polyopshalmus piotus       5       2       2       2       68       22       5       3       1         Sunda sp.<br>Eunide sp.<br>Eunides polyophaneoni<br>Harmoches Embricata       1       15       20       10       3       6         Serpulides<br>Polyofra fight<br>Polyofra fight<br>Polyofra fight<br>Polyofra fight<br>Polyofra fight<br>Polyofra sociitie<br>Polyofra sociit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ctenodrilidae                             |          |               |          |      | 116        | _        |        | 19          | 1            |
| Dorvilleidae<br>Spristronda<br>oprite22141Sonistromunguettennis<br>oprite41Hesionidae<br>Spristromunguettennis249772840162933Opheliidae<br>Armandia bioulata<br>Polyopkalmus pursta<br>Sumida sp.<br>Sumida spristrantia249772840162933Opheliidae<br>Armandia bioulata<br>Polyopkalmus pursta<br>Sumida sp.<br>Sumida sp.<br>Sumida spristration249772840162933Phyllodotidae<br>Balosyme<br>Malosyme<br>Divoldae<br>Sonotia<br>Marothee imbridata1152010366Splonidae<br>Polyopida sonitifie<br>Polyopida sonitifie<br>Polyopida sonitifie<br>Polyopida sonitifie<br>Polyopida sonitifie<br>Polyopida sonitifie<br>Polyopida sonitifie<br>Polyopida sonitifie<br>Polyopidae spisifies<br>Polyopidae spisifies<br>Polyopidae spisifies<br>Polyopidae spisifies<br>Polyopidae sonitifie<br>Polyopidae spisifies<br>Polyopidae spisifies<br>Polyopidae<br>Polyopi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>Transditilus services</li> </ul> | i '      | , ,           | , ,      | '    | 1.70       |          |        |             | -            |
| Jpanyosroska pusrčija       2       2       1       4       1         Jpinovrnja i ongi-<br>ovrnta       Jpinovrnja i ongi-<br>ovrnta       4       1       1         Hesionidae<br>Ophiadromus pugetrensis       4       1       1         Plazymerie bizanali-<br>dulata       24       9       77       28       40       16       29       33         Opheliidae<br>Armandia bizoulata<br>Polyopthalmus piztus       5       2       2       68       25       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3 </td <td>Dorvilleidee</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ļ</td> <td>I  </td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dorvilleidee                              |          |               |          |      |            | ļ        | I      |             |              |
| Soniscontigue longio       Jongio         Jornie       Jongetrensis       4         Hereidae       Johiodromus pugetrensis       4         Pareidae       Johiodromus pugetrensis       4         Vereidae       Johiodromus pugetrensis       4         Policitae       24       9       77       28       40       16       29       33         Opheliidae       Jongio       2       2       2       68       25       3         Polyphtalmus pictus       5       2       2       2       5       3       1         Polyphtalmus pictus       5       2       2       10       3       6         Polynoidae       1       15       20       10       3       6         Juvenile       Johnsoni       3       1       3       2       2         Sabellidae       1       15       20       10       3       2         Juvenile       Sabellidae       1       3       5       2       2       3       3         Sabellidae       1       3       5       8       4       9       4       4       3       3         Splydona fig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Jphryotrocha puerílie                     | 2        | 2             |          | 1    |            | ł        |        |             | 4            |
| oprais     4     1       Phindromus pugetiensis     4     1       Platynersis biamali-<br>aulata     24     9     77     28     40     16     29     33       Opheliide<br>Armandia biosulata<br>Poiyopthalmus pictus     24     9     77     28     40     16     29     33       Opheliide<br>Armandia biosulata<br>Poiyopthalmus pictus     2     2     2     68     25       Phyllodocides<br>Sumida sp.<br>Eumida sp.<br>Eumida sequence     1     15     20     10     3     6       Polynoide<br>juvenile     1     15     20     10     3     6     22       Polynoides<br>juvenile     1     15     20     10     3     6       Subsilides<br>Chone sp.<br>Juona iminolit     1     15     20     10     3     2       Spionides pasificme     1     3     5     8     4     4     4       Spionides polyfors iminolit<br>Polydors iminolit     1     3     5     8     4     94       Spioridies polyfors spiferme     205     205     10     13     25     33       Spirorbides     205     205     10     13     25     33       Spirorbides     20     107     13     25     33 </td <td>Sonietomeringos longi-</td> <td>ļ</td> <td></td> <td></td> <td>}</td> <td>i</td> <td></td> <td>1</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sonietomeringos longi-                    | ļ        |               |          | }    | i          |          | 1      |             |              |
| Hestonide<br>Ophiadromia pugatientie2497728401Platynereise biognali-<br>oulata249772840162932Ophellide<br>Armandia biogulata<br>Polyophalmus piotus222682525Phyllodocidee<br>funda sp.<br>fumida sp.<br><td>opraís</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>ŀ</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | opraís                                    |          |               |          | 1    |            |          |        |             | ŀ            |
| Image: Strate of the state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Nestonides                                |          |               |          | 4    | ŀ          | ł        |        |             | 1            |
| Nereilae<br>Playnereie biognali-<br>culata249772840162933Opheliidae<br>Armandia biogulata<br>Polypohalmus piotus52226825Phyllodocidee<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ' Ophiodromus pugetiensi                  | a l      | <b>!</b>      |          | 1    | 4          | -        |        | 1           |              |
| Mereidae       Plazymereie biognali-<br>oulata       24       9       77       28       40       16       29       33         Opheliidae       Armandia biogulata<br>Polyopthalmus piotus       2       2       2       2       68       25       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33       33 <t< td=""><td>· · · · · · · · · · · · · · · · · · ·</td><td></td><td>!</td><td></td><td></td><td></td><td>1</td><td></td><td>_</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · · · · · · · · · · · · · · · · · · ·     |          | !             |          |      |            | 1        |        | _           |              |
| Pidigmeneie bidanalis-<br>sulata249772840162932Ophellidae<br>Armadia bissulata<br>Polyoptkalmus pistus52226825Phyllodocidae<br>Eulatia sp.<br>Eumida eanguinea52226825Phyllodocidae<br>Eumida sp.<br>Eumida eanguinea1152010368Polyoptkalmus pistus<br>Eumida eanguinea1152010368Polyoldae<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nereidae                                  |          | ł             |          | ł    |            | 1        |        |             |              |
| Judges249172840162934Opheliidae<br>Polyopthalmas piotus5226825Phyllodocidae<br>Bulatia sp.<br>Eumida eanguinea5221031Polynoidae<br>Juvenile<br>Harmothae imbrioata115201036Polynoidae<br>Juvenile<br>Harmothae imbrioata115201036Juvenile<br>Harmothae imbrioata115201036Sepolidae<br>Polydora linicols<br>Polydora sp.<br>Horosiae sp.1352525Spionidae<br>Dolydora sp.<br>Boocardia probasorida<br>Castopina sp.20820135494Spirorbidae<br>Autolygus sp.<br>Proscides pp.20820132535Syllidae<br>Autolygus sp.<br>Proscides pp.20820132535Syllidae<br>Autolygus sp.<br>Proscides pp.219416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Platynereie bioanali-                     |          |               |          |      |            |          |        |             |              |
| Opheliidae<br>Armandia biogulara<br>Polyopthalmus piotus2226825Phyllodocidae<br>Eulatia sp.<br>Eumida songuinaa5221033Polyopthalmus piotus115201036Juwenia<br>Bolyopthal<br>Juwenia115201036Juwenia<br>Balosydma breviserpsa<br>Ralosydma biomsoni<br>Harmothae imbrigata115201036Juwenia<br>Balosydma biomsoni<br>Harmothae imbrigata115201036Sabellidae<br>Polydora socialia<br>Cone sp.<br>Horde spatificms1356420Spionidae<br>Polydora invosis<br>Docardia probasoridaa<br>Caonie sp.135644Spirorbidae<br>Descorida probasoridaa<br>Caonie sp.2082013131415Syllidae<br>Autolysus sp.<br>Polydora sp.208201313152535Syllidae<br>Autolysus sp.<br>Polydora sp.219442913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ; 34145 <b>4</b>                          | 1 24     | . 9           | ''       | 28   | 40         |          | 10     | 29          | 32           |
| Arrandia bioulata<br>Polyophalmus pierus2226825Phyllodocides<br>Iutatia sp.<br>Iumida sp.<br>Eumida sanguinea3333Polynoides<br>juvenile<br>Harmothae imbridata115201036Sabellides<br>Chone sp.<br>Thome sinudata<br>Othone molifie115201036Securides<br>Harmothae imbridata115201036Securides<br>Harmothae imbridata115201036Securides<br>Polydona fight<br>Polydona sp.<br>Boografia probacidea<br>Cartospira sp.13525Spirorbides<br>Cartospira sp.20820107132535Sylindes<br>Autolytics sp.21441629                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ogheliidee                                |          |               |          |      |            |          |        |             | ]            |
| Polyopskalmus piotus     5       Phyllodocides     3       Lulatia sp.       Lumida sanguinea       Polynoidae       juvenile       juvenile       Juvenile       Ralosydna jainsoni       Harmothae imbridata       Chone sp.       Chone sp.       Shoridae       Polydorx ligni       Polydorx ligni       Polydorx ligni       Polydorx sp.       Boorandia probaccidea       Cantos sp.       Sprobidae       Polydorx sp.       Polydorx sp.       Polydorx sp.       Polydora sp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Armandia bisculata                        |          | •<br>i        |          | 2    |            | 2        |        | 68          | 29           |
| Phyllodocidee       3       3         Sunida sp.       Sunida sp.       3       3         Sunida sp.       Sunida sp.       1       15       20       10       3       6         Sunida sp.       1       15       20       10       3       6         Sunidae       1       15       20       10       3       6         Sunidae       1       15       20       10       3       6         Sunidae       1       15       20       10       3       6         Subslidae       1       15       20       10       3       2         Shone sp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Polyopthalmus pictus                      | 5        | 1             | į        | •    |            | _        |        | 5           | 3            |
| Pyliodocidae       3       3         Sumida sp.       Eumida sp.       3       3         Folynoidae       1       15       20       10       3       6         Juvenile       1       15       20       10       3       6         Sabellidee       1       15       20       10       3       1         Schone sp.       3       1       3       5       25       25         Splonidee       1       3       5       8       4       94       3         Sploratise       1       3       5       4       94       3       3         Sploratise       20       107       13       25       35       3       3         Syllidee       2       9       4       16       15       1       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                           |          |               |          |      |            |          | 1      |             |              |
| Sumida sp.       Juvenila sp.       Juvenila singuinea       Juvenila       Juvenil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Phyliodocides                             | 1        |               | 1        |      | ]          |          |        |             | l ,          |
| Eumida eanguinea       1       15       20       10       3       6         Juvenile       1       15       20       10       3       6         Juvenile       1       15       20       10       3       6         Malosydna breviserosa       1       15       20       10       3       6         Marmathae imbricata       3       3       3       3       3       3       3         Sabellides       0       3       1       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tumida so                                 | }        |               |          |      | 1          |          | 1      | 5           | 1            |
| Polynoidae<br>juvenile<br>Ralosydna breviserosa<br>Ralosydna breviserosa<br>Ralosydna breviserosa<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Eumida sanguinea                          |          | ļ             |          |      |            |          |        |             | -            |
| Polynoldae<br>juvenile<br>Allowydna breviserosa<br>Halosydna breviserosa<br>Halosydna breviserosa<br>Halosydna breviserosa<br>Harmothae imbriaata115201036Sabellidae<br>Chone sp.<br>Thone standsta<br>Chone mallie115201022Serpulidae<br>Hydroidae pasifisme13521Serpulidae<br>Hydroidae pasifisme13525Spionidae<br>Polydora light<br>Polydora socialia<br>Cantos sp.13525Spirorbidae<br>Cantos sp.135494Spirorbidae<br>Cantos sp.20820107132535Syllidae<br>Autolytis sp.2144162915                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |          |               | 1        |      |            | ł        |        |             |              |
| Juvenia     1     13     20     2       Ralosyda breviserosa     1     13     20     2       Ralosyda johnsoni     3     3     3       Sabellidae     3     3     3       Chone sp.     3     1     3       Chone snudata     3     1       Chone snudata     1     3       Chone snudata     1     3       Chone snudata     1     3       Chone snudata     1     3       Serpulidae     1     3       Polydora ligni     5     25       Splonidae     1     3       Polydora ligni     4       Polydora sp.     1       Joscardia probacoidea     4       Canice sp.     208       Spirorbidze     208       Sylidae     25       Autolytus sp.     2       2     9       Autolytus sp.     2       Sylidae     2       Autolytus sp.     2       2     9       Autolytus sp.     2       2     1       3     29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Polynoidae                                | 1.       | 1             |          | 20   | <u>.</u> . | 10       |        | 3           | 6            |
| Matoleydda febreadd     2       Harmothae imbrioata     3       Sabellidae     3       Chone sp.     3       Chone sp.     3       Chone sp.     3       Chone sp.     3       Chone mallie     1       Serpulidae     5       Mydroidae pasifisme     5       Spionidae     5       Polydora ligni     432       Polydora ligni     432       Polydora socialie     1       Spirorbidze     4       Cantoe sp.     208       Spirorbidze     208       Sylindae     2       Autolytus sp.     2       Sylindae     2       Autolytus sp.     2       Sylindae     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | juvenile<br>Relacudes beeniscores         | 1 -      | 1             | 1 13     |      | 20         |          |        | -           | 1            |
| Marmathae imbridata     3       Sabellidae     3       Chone sp.     3       Shone enudata     1       Chone mallie     1       Setpulidae     1       Wydroides pasificme     5       Spionidae     5       Polydora ligni     433       Polydora ligni     434       Polydora socialie     1       Joscardia probaccidea     4       Lantos sp.     208       Spirorbidze     208       Sylidae     20       Autolytus sp.     2       Sylidae     2       Autolytus sp.     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Haloryana jahrsoni<br>Haloryana jahrsoni  | 1        | İ             |          |      |            |          | ļ      |             | 2            |
| Sabellidae       21         Chone mp.       3         Chone mollie       3         Serpulidae       1         Hydroides pasifisme       1         Spionidae       5         Polydora ligni       5         Polydora ligni       432         Polydora socialie       1         Joscardia probaccidea       4         Cantoe sp.       208         Spirorbidze       208         Sylidae       208         Autolytus sp.       2         Sylidae       2         2         Sylidae <td< td=""><td>Harmothae imbridate</td><td></td><td>1</td><td>1</td><td></td><td></td><td></td><td>1</td><td>3</td><td>1</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Harmothae imbridate                       |          | 1             | 1        |      |            |          | 1      | 3           | 1            |
| Sabellidae       21         Chone sp.       3         Chone sp.       1         Serpulidae       1         Hydroidas pasificme       5         Spionidae       5         Polydora ligni       5         Polydora ligni       4         Polydora socialis       1         Polydora socialis       1         Polydora socialis       4         Polydora sp.       208         Polydora sp.       208         Spirorbidze       208         Sylidae       2         Autolytus sp.       2         Sylidae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |          |               |          |      |            |          |        |             | -            |
| Chone sp.       3         Chone sp.       1         Setpulidae       1         Wydroidae pasifisme       5         Spionidae       5         Polydora lintoola       5         Polydora socilie       1         Cantoe sp.       1         Spirorbidae       208         Spirorbidae       208         Syllidae       208         Autolytus sp.       2         Syllidae       2         Autolytus sp.       2         Syllidae       1         Autolytus sp.       2         Syllidae       1         Autolytus sp.       2         Syllidae       1         Autolytus sp.       2         Solution sp.       3         Syllidae       3         Autolytus sp.       3         State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sabellidae                                | ļ        |               | i        |      |            | 1        |        |             | 21           |
| When mollie       1         Serpulidae       1         Hydroidae pasifisme       5         Spionidae       5         Polydora linteola       4         Polydora sociatie       1         Spirorbidae       208         Cantoe sp.       208         Syllidae       2         Autolytus sp.       2         Polytus sp.       2         Syllidae       2         Autolytus sp.       2         Syllidae       2         Syllidae       2         Autolytus sp.       2         State       2         State       2         State       2         State       3         State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Chona anostato                            | 1        |               |          |      |            | 1        |        | 3           | 1            |
| Serpulidae       4       1         Hydroides pasificms       1       3       5       25         Spionidae       Polydora light       4       432         Polydora light       1       3       5       8       4         Polydora sociatio       1       3       5       8       4       94         Polydora sociatio       1       3       5       4       94       94         Sociardia problemidea       4       4       94       1       1       1         Spirorbidae       208       20       107       13       25       35         Syllidae       2       1       9       4       16       29       13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . Chone mollie                            | i        | 1             |          | 1    | 1          |          | 1      | 1           |              |
| Serplides       431         Hydroides pasifisms       5         Spionides       1         Polydora light       431         Polydora light       431         Polydora socialis       1         Spirorbidae       4         Spirorbidae       208         Syllidae       20         Autolytus sp.       2         2       1       4         4       16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |          |               |          | 1    | 1          |          | 1      | 1           |              |
| Ayaroldas pairine       5         Spionidas       Polydora ligni         Polydora ligni       1         Polydora socialis       4         Polydora socialis       4         Spirorbidze       208         Sectospira sp.       208         Syllidae       2         Autolytus sp.       2         Polytus sp.       2         Syllidae       29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Serpulidae                                | Í        | 1             | 1        |      |            |          |        | 1           |              |
| Spionidae       Polydora light       433         Polydora light       Polydora light       1       3       5       6       4       433         Polydora socialis       1       3       5       6       4       94       433         Polydora socialis       1       3       5       4       94       94       94         Spirorbidze       208       20       13       25       35         Sylidae       208       107       13       25       35         Sylidae       2       1       4       16       29       13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | yarosana pasifisma                        |          | 1             | 1        | 1    |            |          | 1      | 5           | 29           |
| Polydora ligni<br>Polydora Lincola<br>Polydora sociala<br>Polydora sociala<br>Docardia probacorilea<br>Laonice sp.     1     3     5     8     4     94       Spirorbidze<br>Cectospira sp.     208     20     13     5     94     94       Spirorbidze<br>Cectospira sp.     208     20     13     25     35       Syllidae<br>Autolytus sp.     2     1     9     4     16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Spionidem                                 |          | 1             | 1        | 1    | 1          |          | i i    | }           | 4.22         |
| Polydora limicola     1     3     5     8     4       Polydora socialis     1     3     5     8     4       Polydora sp.     3     5     4     94       Boosardia probacoidea     4     4     94       Spirorbidze     208     20     13     1       Spirorbidze     208     107     13     25       Syllidae     4     16     29     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Polydora ligni                            | 1        | i             |          | 1    | 1          |          |        | 1           | 432          |
| Polydora socialis     1     3     5       Polydora sp.     1     3     5       Bocardia probaccidea     4     94       Spirorbidae     208     20     13       Spirorbidae     208     107     13       Syllidae     2     107     9       Autolytus sp.     2     1     4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Polydora limicala                         | 1        |               | 1        |      | 8          | 4        |        |             |              |
| Forging app.     300 ardia probascilea     4     94       Boordia probascilea     4     94       Cantide sp.     208     20     13       Spirorbidze     208     107     13       Syllidae     4     25     35       Autolytus sp.     2     1     4     16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ' Polydora socizije<br>Polydora           | 1        | 1 1           | 1        | 5    |            |          |        |             |              |
| Spirorbidge     208     20     13     1       Spirorbidge     208     20     13     25     35       Syllidge     4     29     13       Autolytics sp.     2     1     4     16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ratydora ep.<br>Bascardia prahosociani    |          | Į.            |          |      |            |          | 1      | 94          | 1            |
| Spirorbidge<br>Sectospirs sp.         208         20         13         25         35           Syllidae<br>Autolytus sp.<br>Rtingswife sp.         2         1         9         4         29         13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | i Caonice sp.                             | 1        | i             |          |      | 1 1        |          |        |             | _            |
| Spirorbidge         208         20         13         25         34           Seriespirg sp.         107         107         10         25         34           Syllidae         9         4         29         15           Autolytus sp.         2         1         4         16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                         |          |               |          |      |            |          |        |             | 1            |
| Syllidae<br>Autolytus 10.<br>Autolytus 10.<br>Autolyt                                                                      | Spirorbidze                               | 208      | 20            |          | 13   |            |          |        | 25          | 35           |
| Syllidae<br>Autolytus Mp.<br>Autolytus Mp.<br>Autolytus Mp.<br>2 1 4 16 29 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Serveptra sp.                             | 1        | 1             | 107      |      |            | ]        | 1      | 1           | **           |
| Autolytus sp. 2 1 4 29 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Syllidae                                  | 1        |               | ł        |      |            |          | ł      | 1.          |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Autolytus sp.                             |          | 2             | 1        | "    | 4          | 4        | 1      | 29          | 17           |
| L resultation and T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pronosyllis sp.                           | 1        | 1             | -        |      |            |          | 1.0    |             |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L                                         | <u> </u> | 1             | <u> </u> |      |            |          | 1      |             |              |

.

## Table 23 (continued)

|                                                                                               | 23 F#     | 5. 77 1     |            | Apr.        | 77 1  | 3 May 77 | 3 3               | un. 77 | 25 341. 77 |
|-----------------------------------------------------------------------------------------------|-----------|-------------|------------|-------------|-------|----------|-------------------|--------|------------|
|                                                                                               | 00 3      | ta. i       | 00         | ) 5ca.      |       | UO Sta.  | ượ s              | ta.    | UO Sta.    |
| Organisms                                                                                     | 01        | 03          | 01         | 03          | 10 1  | 29       | 29                | 15     | 10         |
| ARTHROPODA CRUSTACEA<br>Copepoda                                                              | 364       | 144         | 501        | 38]         | 804   | 64B      | <b>34</b> 8 :     | 602    | 526        |
| Gammaridea (AMPHIPODA)<br>Corophiidae                                                         |           |             |            |             |       |          |                   |        |            |
| Corophium acherusi:                                                                           | um 35     | 28          | 49         | 65          | ĺ     | 102      | 298               | 1211   | 2425       |
| Ericthonius brisil:<br>ensis                                                                  | 2         | 1           | 5          |             | :     | 8        | 48                | 81     | 25         |
| <b>Gamma</b> ridae<br>Elasmopus rapaz                                                         | 1         | 13          | 3          | 6           |       |          |                   | 12     | 16         |
| I <b>sacida</b> e<br>Gammaropsis thomps:                                                      | oni -     |             |            |             |       |          |                   |        |            |
| Ischyrocsridae<br>Jassa falcata<br>Microjassa litotes                                         |           |             | 3          | 4           |       | 486      | 1728              | 380    | 2403       |
| Podoceridae<br>Podocerus brasili-<br>ensis                                                    | 5         | 1           | B          | 1           | 12    | 306      | 112               | 252    | 777        |
| Stenothoidae<br>Stenothoe valida                                                              |           |             |            | 1           |       | 290      | 64                | 23     | 4          |
| Caprellidea (AMPHIPODA<br>Aeginellidae<br>Deutella saliforni                                  | aa aa     |             |            |             |       | 236      |                   | 94     | 59         |
| Caprellidae<br>Caprella sp.<br>Caprella californi<br>Caprella equilibra<br>Caprella verrucosa | ca 1      | 1           |            | 2           | 4     |          | 384<br>144<br>384 |        | 146<br>84  |
| <b>isopoda</b><br>Limnoridae<br>Limnoria tripuncta                                            | ta        | 5           |            | 4           |       |          |                   | 16     | 2          |
| Munnidae<br>Munna sp.                                                                         |           |             |            |             |       |          |                   |        |            |
| Ianiridae<br>Ianiropsis sp.                                                                   |           |             |            | 2           |       |          |                   |        |            |
| S <b>phaeromati</b> dae<br>Paracerceis sculpt                                                 | <br>a<br> |             |            |             |       |          |                   |        | 1          |
| ARTHROPODA<br>Tanaidacea<br>Anatanais normani                                                 | 46        |             | 49         | 5           | 8     | 2        |                   | 12     | 13         |
| Thoracica<br>Balanus amphitrite                                                               |           |             | 1          |             | 12    |          |                   |        |            |
| Pycnogonida                                                                                   |           | 4           |            | 3           | 4     | 2        | 160               | 3      |            |
| CHORDATA ASCIDIACEA<br>Aplousobranchia<br>Diplosoma masdonaldi<br>(=pizori)<br>Phlebobranchia | 0.12g     |             |            | 0.05g       |       |          |                   | 40     | 0.019      |
| Ciona intestinalis<br>Stolidobranchia<br>Sotryllus Sp.                                        | 19        | 27<br>0.03g | 4<br>0.01g | 18<br>0.02g | 0.04g | 12       | 80                | 0.04g  | 0.40g      |
|                                                                                               |           | Ì           |            |             |       |          |                   |        |            |

Table 23 (continued)

| <u></u>                                                                            |                |                    | ·     | Apr.     | 77        | 3 May 77  | 8 J      | un. 77         | 25 Jul.77 |
|------------------------------------------------------------------------------------|----------------|--------------------|-------|----------|-----------|-----------|----------|----------------|-----------|
|                                                                                    | <u>- 23 F8</u> | <u>, //</u><br>ta. | 00    | ) Sta.   |           | UO 5ta.   | <u> </u> | ta.            | UC Sta.   |
| Organisms                                                                          |                | 03                 | 01    | 03       |           | - 19      | 0.9 1    | 10             |           |
| MOLLUSCA<br>Gestropoda snail<br>Nudibranchia<br>Wirnella carinata                  | 1              | 3                  | 7     | 23<br>30 | 32<br>4   | 6<br>86   | 160      | 59<br>67       | 4         |
| Pelecypoda<br>Histellidae<br>Histellida arctisa                                    |                | 8                  | 3     | 23       |           | 14        | 32<br>16 | 49<br>23       | 64        |
| <b>Mytilidae</b><br>Mytilus edulis                                                 | 11             | 38                 | 4     |          | 16        | 40        | 400      | 479            | 78        |
| Pectinidae<br>Septopecten latíau<br>atue                                           | <br> -<br>  1  |                    | 1     | 6        |           |           |          | 3              | 2         |
| ASCHELMINTHES                                                                      |                |                    |       | 7        | 4         | <b></b> s | 16       | 12             | 89        |
| PLATYNELMINTHES                                                                    |                | 4                  |       | -        | •         |           |          |                |           |
| Polycladia                                                                         | 0.04-          | 0.010              | 2     | 2        |           | 2         | 32       | 29             | 81        |
| BRYOZOA CHEILDSTOMATA<br>Bicelleriellidae<br>Bugula californica<br>Bugula neritina | 0.04g          | 0.019              |       | ļ        |           |           | 0.16g    | 0.01g<br>0.02g | 0.42g     |
| Hembraniporidae<br>Nembranipora                                                    |                |                    |       |          |           |           |          |                |           |
| Cryptonula sp.                                                                     |                | 1                  | 0.01g |          |           |           |          |                |           |
| CNIDARIA HYDROZOA<br>Campanulariidas<br>Obsita sp.                                 |                | 0.11g              |       | 0.49g    | 0.04g     | 2.50g     | 16.64    | g 0.20g        | 0.95g     |
| Tubilariidae<br>Subularia sp.                                                      |                | 0.01g              | <br>! |          |           | 0.16g     |          |                |           |
| OTHER ANIMALS<br>Mysidacea Mysid                                                   |                |                    | 1     | 1        | <br> <br> |           |          |                |           |
| Sea anemone                                                                        |                |                    |       |          |           |           |          |                | 1         |
| Foraminifera                                                                       |                |                    | 1     | 3        | 32        |           | t<br>I   |                |           |
| Oikopleura                                                                         |                |                    |       | 4        |           |           |          |                |           |
| Larval crustacea                                                                   | 1              |                    |       | 4        |           |           |          |                |           |
| Cumacea                                                                            | ‡<br>          |                    | ļ     |          |           | 2         |          | 1              |           |
| Thoracia                                                                           |                |                    |       | 1        |           |           |          | ĺ              |           |
| Sabellaridae                                                                       |                |                    |       |          |           | 2         |          |                |           |
| Sabettaria sp.<br>Gestropoda<br>Crepidula onyx<br>Acmaeidae                        |                |                    |       |          |           |           |          | 3              | 1         |
| Decapoda / Brachyura<br>Lozorhynows sp.                                            | i              | !<br> <br>         | :     |          |           |           |          | 1              |           |

# Table 23 (continued)

| 3 | 0.17g | <u>o Sta.</u><br>03<br>0.43g | LO    | <u>10 5ta.</u><br>09 | <u>09</u><br>09      | a1<br>10<br>5<br>18        | <u>00 Sta.</u><br>10<br>1<br>0.83g |
|---|-------|------------------------------|-------|----------------------|----------------------|----------------------------|------------------------------------|
| 3 | 01    | 03<br>0.43g                  | LO    | 09                   | 09                   | 10<br>5<br>18              | 101<br>0.83g                       |
| 3 | 0.17g | 0.43g                        |       |                      |                      | 5                          | 1<br>0.83g                         |
| a | 0.17g | 0.43g                        |       |                      |                      | 18                         | 0.83g                              |
| g | 0.17g | 0.43g                        |       |                      |                      |                            | 0.83g                              |
|   |       |                              |       |                      |                      |                            |                                    |
|   |       |                              | 1 1   |                      | 1                    | 1 1                        |                                    |
| 1 |       |                              | 0.92g | 0.16g                | 0.48g                | 0.03g                      |                                    |
|   |       |                              |       |                      |                      |                            |                                    |
|   |       |                              | 0.96g |                      |                      |                            |                                    |
|   |       |                              | 0.72g | 0.28g                | 0.16g                | 0.10g                      |                                    |
|   |       |                              |       | 0.96g<br>0.72g       | 0.96g<br>0.72g 0.28g | 0.96g<br>0.72g 0.28g 0.16g | 0.96g<br>0.72g 0.28g 0.16g 0.10g   |

MARINE STUDIES OF SAN PEDRO BAY, CALIFORNIA. PART 15. DECEMBER 1978

#### E. BREAKWATER BIOTA

<u>Algae</u>. The breakwater rocks form a habitat for algae and incrusting, attached or sessile invertebrates. Samples taken from the breakwater by divers represent the growth and succession of biota of unknown size and duration, in contrast to settling racks which represent monthly changes in harbor species. The texture of the rocks and the differences in orientation, as well as the amount of exposure to air intertidally and exposure to wave action, give variety to the area and encourage species diversity.

The breakwater is really the only major habitat for algae in the harbor, except for limited numbers of species found on pilings and docks, and of course the newly planted kelp bed (HEP, 1978).

In July and August of 1973 and 1974,12 stations on the breakwater were surveyed for algae and associated invertebrates, six on the inside of the three sections of breakwater and six on the outside. Station H1 was located at the bend in the San Pedro breakwater and H7 was on the outside at the same location. At that time a full square meter template was used for the area scraped, but subsequent sampling effort was reduced to  $1/16 \text{ m}^2$  because of the irregularity of the substrate and the quantity of material obtained.

Station HI was located near to station UO15, established in December 1976 to study the <u>Sansinena</u> impacts. Two new stations were added; Ha was located at the outer end of the fishing pier near UO14, and Hb was located about halfway from HI to the Angels Gate end of the breakwater. The surf was too dangerous in January 1977 to scrape the outer breakwater, but there was no evidence of oil on the outer rocks. The 1973-1974 surveys had shown that, while there were about the same number of algae species on the inner and outer breakwaters, the species composition differed greatly.

The algal species found on January 4, 1977, two weeks after the <u>Sansinena</u> incident, are listed in Table 24. The breakwater had been heavily oiled by the tidal extremes, and oily debris was trapped at the bend; this is probably the reason for finding fewer species at H1, followed by Ha. Station Hb was the richest.

However, on March 29, 1977 station Hl was richer than either stations Ha or Hb, and it is possible that a die-off had permitted a broader range of species recolonizing. The increase in species was greatest among the phaeophycophytes in March (Table 25).

No further algal sampling was possible, but for purposes of comparison Table 26 gives species found in the summers of 1973 and 1974 (AHF, 1976). There was considerable difference in the species composition between the two years, as indicated by the symbols. This may have been due to the quite different temperature regimes in the five years (AHF, 1976). However, the possibilities for sampling limitations and patchiness preclude attaching undue importance to the data. Robert Setzer, who identified the 1973-74 algal collections, also identified the January and March 1977 samples.

Fauna. The animal species found in association with algae in the breakwater quadrat sampling were found to be much more abundant in species and numbers of individuals in the January 4, 1977 sampling than in March 1977 (Tables 27 and 28). Studies discussed later showed depauperate fauna in January and March at Cabrillo Beach, with some recovery by June. However, the abundance seen in the January samples at H1 was not found in June, although species diversity was good. Wicksten recorded the return of the isopod *Ligia occidentalis* to the beach in August as an indicator of more normal conditions.

A final survey in December 1977 (Table 30) showed considerable diversity. It should be roughly comparable to the January 4 sampling since the winter quarter is considered to consist of the months of December, January and February in this region.

#### Conclusion

Indications from the quadrat sampling were that there was a considerable impact on breakwater biota following the oil spill. Both numbers of species and individuals were greatly reduced in March and June, 1977.

The kelp bed transplant, begun in June 1977, indicated that numerous species and individuals were in the area or came to inhabit the kelp following that period (HEP, 1978).




| Table | 24. | Algae fr | om | Los Ange | les H | arboi | Breakwater. |
|-------|-----|----------|----|----------|-------|-------|-------------|
|       |     | January  | 4, | 1977.    | (1/16 | m. 9  | luadrat)    |

|                                                      | S  | TATION   | S        |
|------------------------------------------------------|----|----------|----------|
| SPECTES                                              | Hl | На       | HЬ       |
| Chlorophycophyta                                     |    |          |          |
|                                                      |    |          | ٠        |
| Chaetomorpha sp                                      |    | •        | •        |
| Claaophora sp.                                       | •  |          | •        |
| Derbesta martha                                      |    |          | •        |
| Ulothnir sp                                          |    | •        |          |
|                                                      |    |          |          |
|                                                      | •  |          | •        |
| Feldmannia SD.                                       | •  |          | <u> </u> |
| Ciffordia SD.                                        |    | •        | <u> </u> |
| Rhodophycophyta                                      |    |          |          |
| Antithamnionella breviramosa                         | •  |          | •        |
| Antithamnion defectum                                |    | L        | <u> </u> |
| Champia parvula                                      |    | ļ        |          |
| Chondria arcuata                                     |    | <u> </u> | ┿╾╌┻╌    |
| • Corallina officinalis chilensis                    |    | <b></b>  | +        |
| Corallina pinnatifolia                               |    | +        |          |
| Corallina vancouveriensis                            |    |          |          |
| Dasya sp.                                            |    |          | +        |
| Delesseriaceae (young)                               |    | <u> </u> |          |
| Erythrotrichia tetraseriata                          |    |          |          |
| Gigartina tepida                                     |    |          | +        |
| Goniotrichum alsidii                                 |    |          | •        |
| Microcladia coulteri                                 |    |          |          |
| Murrayellopsis dawsonii                              |    |          | +        |
| Nienburgia andersoniana                              |    |          |          |
| Pleonosporium vancouverianum                         |    | •        | •        |
| Polysiphonia pacifica aericatuta                     |    |          |          |
| Polysiphonia scopulorum val. victum                  |    | •        | •        |
| O Prionitis lanceolata                               |    | •        | •        |
| Preposiphonia denarordea                             |    |          |          |
| • Indicates dominant species<br>• Indicates presence |    |          |          |

| Table | 25. | Algae  | found   | along             | the | Los | Angeles | Harbor | Breakwat <b>er.</b> |
|-------|-----|--------|---------|-------------------|-----|-----|---------|--------|---------------------|
|       |     | 29 Mai | rch, 19 | 977. <sup>–</sup> |     |     |         |        |                     |

| SPECIES                          | Hl    | Ha | Hb       |
|----------------------------------|-------|----|----------|
| Chlorophycophyta                 |       |    |          |
|                                  |       |    |          |
| Bryopsis Sp.                     |       |    |          |
| Chaelomorpha Linum               |       |    |          |
| Dephenia Sp.                     |       |    |          |
| Entenomenula SD.                 |       |    |          |
| Ill na sp                        |       |    |          |
|                                  |       |    |          |
| Phaeophycophyta                  |       |    |          |
| Dictyota sp.                     |       |    |          |
| Ectocarpus sp.                   |       |    | <u> </u> |
| Feldmannia cylindrica            |       |    |          |
| <u> </u>                         |       |    |          |
| Giffordia sp.                    |       |    | <u> </u> |
| Laminarian (young)               |       |    | <u> </u> |
| Sphacelaria furcigera            |       |    |          |
| Rhodophycophyta                  |       |    |          |
| Acrochaetium sp.                 |       | •  | •        |
| Antithamnion defectum            |       | •  |          |
| Antithamnionella breviramosa     |       |    |          |
| Corallina vancouveriensis        |       |    |          |
| Daeya sp.                        |       |    |          |
| Erythrotrichia sp.               |       |    |          |
| Fauchea laciniata f. pygmaea?    | f     |    |          |
| Gigartina spinosa                |       |    |          |
| G. tepida                        |       |    |          |
| Gontotrichum sp.                 |       |    |          |
| Microcladia coulteri             | •     | •  |          |
| Nienburgia andersoniana          |       |    |          |
| Fleonosporium vancouverianum     |       |    |          |
| Pleonosporium sp.                |       |    |          |
| Polysiphonia pacifica delicatula |       | J  |          |
| P. scopulorum var. villum        |       |    |          |
| Prionitis lanceolata             |       |    |          |
| Pterosiphonia denaroidea         |       |    |          |
| Phodumonia sp.                   | ]     |    |          |
| Tiffanialla and and a second     |       |    |          |
| Velerog subulata                 |       | •  |          |
|                                  |       |    |          |
| Other                            |       |    |          |
| Ulothrix sp.                     |       |    |          |
| Diatoms                          | ┈┈╸╸┤ |    |          |

|                                       | Stat           | ions     |
|---------------------------------------|----------------|----------|
| SPECIES                               | Hl             | H7       |
| Chlorophycophyta                      | l              |          |
| Chaetomorpha SD.                      | •              |          |
| Cladophora araminea                   | 0              |          |
| Cladophora Sp.                        | •              |          |
| Derbesia marina                       |                | 0        |
| Enteromorpha prolifera                | 0              |          |
| Enteromorpha sp.                      | •              |          |
| Illva sp.                             | 0              |          |
|                                       |                |          |
| <b>Phaeophy</b> cophyta               |                | ŀ        |
| colonamia perearina                   | •              |          |
| Dictuota flabellata                   | 0              | Ι        |
| Peldmannia SD.                        |                | 0        |
| Ciffordia sp                          | 00             |          |
| Stjjbrata Sp.                         |                | T        |
| Rhodophycophyta                       |                |          |
| Aninoaladalla nagifica                | 0              |          |
| Antisbecaueera paer, sou              | 0              | 0.       |
| Antichammion brevinamosa              | 0.             | 1        |
| Conclling officinglis chilensis       |                | 0        |
| Conglling ninnatifolia                | •              |          |
| Congling varcouveriensis              | 00             |          |
| Countopleura corallinara              |                | 00       |
| Dagua sinicola var. abussicola        | 0.             |          |
| Enuthnotrichia SP.                    | •              | •        |
| Fauchea laciniata var. pygmaea        |                | 00       |
| Colidium robustum                     |                | 0        |
| Giganting armata/spinosa complex      |                | 0        |
| Gigarting spinosa                     |                |          |
| Gigartina tepida                      | •              |          |
| Conimophyllum skottsbergii            |                |          |
| Goniotrichum elegans                  |                |          |
| Gumnogongrus platyphyllus             |                | <u> </u> |
| Lithothrix aspergillum                |                | -        |
| Microcladia coulteri                  | _              | +        |
| Nienburgia andersoniana               |                | `        |
| Pleonosporium abyssicola              |                |          |
| Pogonophorella californica            |                | 04       |
| Polysiphonia pacifica var. delicatula |                | 0        |
| Prionotis lanceolata                  |                | 0        |
| Pterosiphonia dendroidea              |                |          |
| Pterosiphonia pennata                 | - <u>t</u> -ō- |          |
| Rhodymenia californica                | ━━╫━━━━━       | 1 0      |
| Rhodymenia pacifica                   |                |          |
| Complia delicatula                    | محد کے لیے     |          |

# Table 26. Algae from Los Angeles Harbor Breakwater Summer,1973 and 1974. (Data from AHF, 1976).

| SPECIESH1HaHbProtozca<br>ForaminiferaAbund.Portozca<br>ForaminiferaAbund.Porterata<br>DemospongiaeAbund.Coelenterata<br>HydroideaCommonPObelia sp. ?CommonPObelia sp. ?CommonPObelia sp. ?CommonPMollusca273?Crenella Sp.31Mitrella carinata353Massarina pentoillata11Nassarina pentoillata11Namasarid amphipods51Harpacticoida4-Pyenogonida<br>Monna ubiquita11Progetia dalli11Tanidacea2-Pyrozoa (Abundant)<br>Amathia distansPPMempaniporta<br>Baryozot aculta coidantis<br>Amopiodactylus erectus1Tanystylum sp.11Bryozoa (Abundant)<br>Amathia distansPPugetzia californicaPBarentsia gracilisPDiaperoecia californicaPBarentsia gracilis4Chordata<br>Ascidians4Chordata<br>Ascidians4Cordata<br>Ascidians4Cordata<br>Ascidians4Cordata<br>Ascidians4Cordata<br>Ascidians2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |            | Stations | 3  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------|----------|----|
| Protozoa<br>ForaminiferaAbund.Porifera<br>DemospongiaeAbund.Coelenterata<br>HydroideaCommon<br>PObelia sp. ?CommonAnnelida<br>Polychaeta12Polychaeta12Serpulidae27Mollusca<br>?Crenella sp.3?Crenella sp.3?Crenella sp.3?Crenella sp.3?Crenella sp.3?Crenella sp.1Mitrella carinata<br>assarina pentotllata1?Insesarina sp.1Arthropoda<br>Gammarid amphipods5Harpacticoida4?Pyenogonida<br>Anopladactylus erectus1Anathia distane<br>Pyronogonida1Anathia distane<br>PyronogonidaPPugettia dalli<br>Tanystylum sp.1Procogonida<br>Bugula neritina<br>Pomporella californicaPPugetla i differnica<br>Bugula neritina<br>Bugula neritina<br>Scruposcila californicaPPustia i differnica<br>Bugula neritina<br>Bugula | SPECIES                         | н1         | Ha       | Hb |
| ForminiferaAbund.Porifera<br>DemospongiaeAbund.Coelenterata<br>HydroideaCommonPolelia sp. ?CommonAnnelida<br>Polychaeta12Broughae27Mollusca<br>?Crenella sp.3?Crenella sp.3?Crenella sp.3?Crenella sp.3?Crenella sp.3?Crenella sp.3?Crenella sp.3?Crenella sp.3?Crenella sp.1?Tenella carinata35?Crenella sp.1?Tenella carinata35?Tenella carinata1?Tenella carinata1?Tenella carinata1?Tenella carinata1?Tenella carinata1?Tenella carinata1?Tenella carinata1?Tenella carinata1?Tanaticoida4?Tenestia dalla1?Tanatidacea2?Pycnogonida1Anoplodactylus erectus1?Tanystylum sp.1?Tanystylum sp.1?Tenellaria deifornicaP?P?P?Scruocellaria diegensisP?Tieellaria coeidentalisP?Tellaeroecia californicaP?Tellaeroecia californicaP?Tellaeroecia californicaP?Tellaeria diegensisP?Tieellaria diegensisP?Tieellaria diegensisP?Tieellaria diegensisP?Tieellaria diegensis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Protozoa                        |            |          |    |
| Porifera<br>DemospongiaeAbund.Coelenterata<br>HydroideaCommonPObelia sp. ?CommonPAnnelida<br>Polychaeta123Serpulidae27-Mollusca31?Crenella sp.31Mitrella carinata353?Crenella sp.1Massarina penicillata111?Nassarina penicillata1?Nassarina peni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Foraminifera                    | Abund.     |          |    |
| DemospongiaeAbund.Coelenterata<br>HydroideaCommonPObelia sp. ?CommonAnnelida123Polychaeta123Serpulidae273Mollusca31?Crenella sp.31Mitrella carinata353Nassarina penicillata11?Nassarina penicillata11?Nassarina sp.1Arthropoda5Harpacticoida4"Dynamenella" sp.1Munna ubiquita1Pugetia dalli1Tanaidacea2Pycnogonida<br>Anoplodactylus erectus1Anathia distans<br>Bugula neritinaPPugetia dalifornicaPPugetia californicaPPuguia neritinaPScrupocellaria diegensisPPricellaria cocidentalisPBarentsia gracilis4Comporta3Anoplocat spurpuratus3Chordata4Ascidians4Chordata4Ascidians4Chordata2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Porifera                        |            |          |    |
| Coelenterata<br>HydroideaCommonPObelia sp. ?CommonAnnelida<br>Polychaeta12Serpulidae27Mollusca<br>?Crenella sp.3?Crenella sp.3Creptpatella lingulata3Mitrella carinata3531Mitrella carinata3531Arthropoda<br>Gammarid amphipods1Arthropoda<br>Gammarid anphipods5Harpacticoida4Pugattia dalli1Pagarus n. sp.?1Pregettia dalli1Tanaidacea2Pyrongonida1Anoplodactylus erectus1Tanystylum sp.1Thalamoporella californicaPMuna tuberculataPProgetla brunneaPPPScrupocellaria diegensisPTricellaria occidentalisPDiaperoecia californicoPEntoprocta2Pricellaria diegensisPDiaperoecia californicoPEntoprocta2Barentsia gracilis4Chordata4Ascidians4Ascidians4Ascidians4A2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Demospongiae                    |            | Abund.   |    |
| HydroideaCommonPObelia sp. ?CommonAnnelida12Polychaeta12Serpulidae27Mollusca27?Crenella sp.3Crepipatella lingulata3Mirela carinata35?Crenella sp.3Crepipatella lingulata1Mirela carinata322Massarina penicillata111?Nassarina sp.1Arthropoda5Harpacticoida4"Dynamenella" sp.1Pugettia dalli1Pugettia dalli1Tanaidacea2Pycnogonida1Anoplodactylus erectus1Tanyetylum sp.1I1Bryozoa (Abundant)PAmethia distansPThalamoporella californicaPPugatia a californicaPPusecellaria diegensisPDiaperoecia californicaPDiaperoecia californicaPPicellaria occidentalisPDiaperoecia californicaPEntoprocta2Barentsia gracilis4 cluster.Echinodermata3Corodata3Ascidians42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Coelenterata                    |            |          |    |
| Obelia sp. ?CommonAnnelida123Polychaeta123Serpulidae273Mollusca273?Crenella sp.31Mitrella carinata353Zerpipatella lingulata31Mitrella carinata353Zerpipatella lingulata11Massarina penicillata11?Nassarina sp.11Arthropoda51Gammarid amphipods51Harpacticoida4""Dynamenella" sp.11Munna ubiquita11Pagurus n. sp.?11Pugettia dalli11Tanaidacea2PPycnogonida11Anoplodactylus erectus11Tanystylum sp.11Bryozoa (Abundat)PAmathia distanePPugula neritinaPBuqula neritinaPBuqula neritinaPBuqula neritinaPDiaperoecia californicaPBarentsia gracilis4Chordata3Arongocentrotus purpuratus3Chordata4Ascidians4Arongocentrotus purpuratus3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hydroidea                       | Common     |          | P  |
| Annelida123Polychaeta123Serpulidae27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Obelia sp. ?                    |            | Common   |    |
| Polychaeta123Serpulidae273Mollusca33?Crenella sp.31Mitrella carinata353Massarina penicillata11?Nassarina sp.1Arthropoda5Gammarid amphipods5Harpacticoida4"Dynamenella" sp.1Munna ubiquita1Pagurus n. sp.?1Pugettia dalli1Tanaidacea2Pycnogonida1Anoplodactylus erectus1Thalamoporella californicaPPuguia neritinaPBuguia neritinaPBuguia neritinaPBuguia neritinaPBuguia neritinaPBarentsia gracilis4Chordata3Ascidians4Yacidians3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Annelida                        |            |          |    |
| Serpulidae27Mollusca3?Crenella sp.3Crepipatella lingulata3Mitrella carinata35Massarina penicillata1?Nassarina sp.1Arthropoda5Gammarid amphipods5Harpacticoida4"Dynamenella" sp.1Munna ubiquita1Pagurus n. sp.?1Pugettia dalli1Tanaidacea2Pycnogonida1Anoplodactylus erectus1Tanystylum sp.1Bryozoa (Abundant)PMembranipora tuberculataPPugetla id igensisPTricellaria occidentalisPDiaperoecia californicaPEntoprocta2Barentsia gracilis4Chordata3Ascidians4Ascidians4Ascidians4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Polychaeta                      | 12         | ļ        | 3  |
| Mollusca3?Crenella Sp.3Crepipatella lingulata3Mitrella carinata35Massarina pentellata1?Nassarina sp.1Arthropoda1Gammarid amphipods5Harpacticoida4"Dynamenella" sp.1Munna ubiquita1Pagurus n. sp.?1Pugettia dalli1Tanaidacea2Pycnogonida1Anoplodactylus erectus1Tanystylum sp.1I1Bryozoa (Abundant)PMembranipora tuberculataPPuigella i diegensisPTricellaria occidentalisPDiaperoecia californicaPEntoprocta2Amethia gracilis4Chordata3Ascidians42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Serpulidae                      | 27         | <u> </u> |    |
| ?Crenella Sp.3Crepipatella lingulata3Mitrella carinata35Nassarina penicillata111?Nassarina sp.1Arthropoda1Gammarid amphipods5Harpacticoida4"Dynamenella" sp.1Munna ubiquita1Pagurus n. sp.?1Pugettia dalli1Tanaidacea2Pyronogonida1Amathia distans1Thalamoporella californicaPHaloporella brunneaPPugetla differencePThalamoporella californicaPBugula neritinaPDiaperoecia californicaPDiaperoecia californicaPEntoproctaABarentsia gracilis4Chordata3Ascidians4Ascidians4Ascidians4Ascidians4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mollusca                        |            |          |    |
| Crepipatella lingulata31Mitrella carinata35322Nassarina pentcillata11111Arthropoda1Gammarid amphipods5Harpacticoida4"Dynamenella" sp.1Munna ubiquita1Pagurus n. sp.?1Pugettia dalli1Tanaidacea2Pyronogonida1Amathia distans1Thalamoporella californicaPMembranipora tuberculataPPugula neritinaPBugula neritinaPDiaperoecia californicaPDiaperoecia californicaPEntoprocta2Barentsia gracilis4Chordata3Ascidians4Ascidians4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ?Crenella sp.                   |            |          | 7  |
| Mitrella carinata35322Nassarina penicillata11?Nassarina sp.1Arthropoda1Gammarid amphipods5Harpacticoida4"Dynamenella" sp.1Munna ubiquita1Pagurus n. sp.?1Pugettia dalli1Tanaidacea2Pycnogonida1Amathia distans1Tanystylum sp.1Bryozoa (Abundant)PAmathia distansPPugula neritinaPBugula neritinaPScrupocellaria diegensisPTricellaria occidentalisPDiaperoecia californicaPBarentsia gracilis4Chordata3Ascidians4Ascidians4Ascidians4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Crepipatella lingulata          |            | 3        | 1  |
| Nassarina penicillata11?Nassarina sp.1Arthropoda1Gammarid amphipods5Harpacticoida4"Dynamenella" sp.1Munna ubiquita1Pagurus n. sp.?1Pugettia dalli1Tanaidacea2Pycnogonida1Amoplodactylus erectus1Tanystylum sp.1Bryozoa (Abundant)PAmathia distansPHoloporella californicaPBugula neritinaPBugula neritinaPDiaperoscia californicaPDiaperoscia californicaPBuartsia gracilis4Chordata3Ascidians4Ascidians4Ascidians4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mitrella carinata               | 35         | 3        | 22 |
| ?Nassarina sp.1Arthropoda<br>Gammarid amphipods5Harpacticoida4"Dynamenella" sp.1Munna ubiquita1Pagurus n. sp.?1Pugettia dalli1Tanaidacea2Pycnogonida1Anoplodactylus erectus1Tanystylum sp.1Bryozoa (Abundant)PAmathia distansPThalamoporella californicaPBugula neritinaPScrupocellaria diegensisPTricellaria diegensisPDiaperoecia californicaPBugula neritinaPDiaperoecia californicaPEntoprocta3Barentsia gracilis3Chordata3Ascidians4Ascidians4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Nassarina penicillata           | 1          |          | 1  |
| Arthropoda5Gammarid amphipods5Harpacticoida4"Dynamenella" sp.1Munna ubiquita1Pagurus n. sp.?1Pugettia dalli1Tanaidacea2Pycnogonida1Anoplodactylus erectus1Tanystylum sp.1Bryozoa (Abundant)Amathia distangPThalamoporella californicaPBugula neritinaPBugula neritinaPScrupocellaria diegensisPTricellaria occidentalisPDiaperoecia californicaPBarentsia gracilis4 cluster.Chordata3Ascidians4Ascidians4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ?Nassarina sp.                  |            |          | 1  |
| Gammarid amphipods5Harpacticoida4"Dynamenella" sp.1Munna ubiquita1Pagurus n. sp.?1Pugettia dalli1Tanaidacea2Pycnogonida1Anoplodactylus erectus1Tanystylum sp.1Bryozoa (Abundant)PAmathia distansPThalamoporella californicaPBugula neritinaPBugula neritinaPScrupocellaria diegensisPTricellaria occidentalisPDiaperoecia californicaPBarentsia gracilis4 cluster.Chordata4Ascidians42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Arthropoda                      |            |          |    |
| Harpacticoida4"Dynamenella" sp.1Munna ubiquita1Pagurus n. sp.?1Pugettia dalli1Tanaidacea2Pycnogonida1Anoplodactylus erectus1Tanystylum sp.1Bryozoa (Abundant)PAmathia distansPThalamoporella californicaPBugula neritinaPBugula neritinaPDiaperoecia californicoPEchinodermataAccultaria diegensisBarentsia gracilis4ChordataAAscidians4Ascidians4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gammarid amphipods              | 5          |          |    |
| "Dynamenella" sp.       1         Munna ubiquita       1         Pagurus n. sp.?       1         Pugettia dalli       1         Tanaidacea       2         Pycnogonida       1         Anoplodactylus erectus       1         Tanystylum sp.       1         Bryozoa (Abundant)       1         Amathia distans       P         Thalamoporella californica       P         Membranipora tuberculata       P         Bugula neritina       P         Diaperoecia californica       P         Diaperoecia californica       P         Echinodermata       Strongylocentrotus purpuratus       3         Chordata       Ascidians       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Harpacticoida                   | 4          |          |    |
| Munna ubiquita1Pagurus n. sp.?1Pugettia dalli1Tanaidacea2Pycnogonida1Anoplodactylus erectus1Tanystylum sp.1I1Bryozoa (Abundant)PAmathia distanePThalamoporella californicaPHoloporella brunneaPBugula neritinaPBugula neritinaPDiaperoecia californicaPDiaperoecia californicaPEntoproctaArentsia gracilisBarentsia gracilis4 cluster.ChordataAAscidians42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | "Dynamenella" sp.               | 1          |          |    |
| Pagurus n. sp.?1Pugettia dalli1Tanaidacea2Pycnogonida2Anoplodactylus erectus1Tanystylum sp.1I1Bryozoa (Abundant)PAmathia distansPThalamoporella californicaPHoloporella brunneaPBuqula neritinaPBuqula neritinaPScrupocellaria diegensisPTricellaria occidentalisPDiaperoecia californicaPBarentsia gracilis4 cluster.Chordata3Ascidians4Ascidians4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Munna ubiquita                  | <u> </u>   |          |    |
| Pugettia dalli1Tanaidacea2Pycnogonida1Anoplodactylus erectus1Tanystylum sp.1I1Bryozoa (Abundant)PAmathia distansPThalamoporella californicaPHoloporella brunneaPBugula neritinaPScrupocellaria diegensisPTricellaria occidentalisPDiaperoecia californicaPBarentsia gracilis4Chordata3Ascidians42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pagurus n. sp.?                 | 1          |          |    |
| Tanaidacea2Pycnogonida<br>Anoplodactylus erectus1Tanystylum sp.1I1Bryozoa (Abundant)<br>Amathia distansPAmathia distansPThalamoporella californicaPHoloporella brunneaPMembranipora tuberculataPBugula neritinaPScrupocellaria diegensisPTricellaria occidentalisPDiaperoecia californicaPBarentsia gracilis4 cluster.Chordata<br>Ascidians4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pugettia dalli                  | 1          |          |    |
| Pycnogonida<br>Anoplodactylus erectus1Tanystylum sp.1Bryozoa (Abundant)<br>Amathia distanspAmathia distanspThalamoporella californicapHoloporella brunneapBugula neritinapBugula neritina diegensispTricellaria occidentalispDiaperoecia californicapBarentsia gracilis4 cluster.Amathia distans3Chordata<br>Ascidians4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Tanaidacea                      | 2          |          |    |
| Anoplodactylus erectus1Tanystylum sp.11Bryozoa (Abundant)<br>Amathia distansPPAmathia distansPPThalamoporella californicaPHoloporella brunneaPMembranipora tuberculataPBugula neritinaPScrupocellaria diegensisPTricellaria occidentalisPDiaperoecia californicaPEntoproctaPBarentsia gracilis4 cluster.Chordata3Ascidians4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pycnogonida                     |            | <u> </u> |    |
| Tanystylum sp.11Bryozoa (Abundant)<br>Amathia distansPPThalamoporella californicaPPHoloporella brunneaPPMembranipora tuberculataPPBugula neritinaPPScrupocellaria diegensisPTricellaria occidentalisPDiaperoecia californicaPBarentsia gracilis4 cluster.Chordata<br>Ascidians3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Anoplodactylus erectus          |            |          | 1  |
| Bryozoa (Abundant)<br>Amathia distansPThalamoporella californicaPThalamoporella brunneaPHoloporella brunneaPMembranipora tuberculataPBugula neritinaPScrupocellaria diegensisPTricellaria occidentalisPDiaperoecia californicoPEntoproctaArentsia gracilisBarentsia gracilis4 cluster.Chordata3 1Ascidians4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Tanystylum sp.                  | 1          |          | 1  |
| Amathia distansPThalamoporella californicaPHoloporella brunneaPMembranipora tuberculataPBugula neritinaPScrupocellaria diegensisPTricellaria occidentalisPDiaperoecia californicoPEntoproctaAcluster.Barentsia gracilis4 cluster.Chordata3Ascidians4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bryozoa (Abundant)              |            |          |    |
| Thalamoporella californicaPRoloporella brunneaPPMembranipora tuberculataPPBugula neritinaPPScrupocellaria diegensisPTricellaria occidentalisPDiaperoecia californicoPEntoproctaA cluster.Barentsia gracilis4 cluster.Echinodermata3Strongylocentrotus purpuratus3Ascidians4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Amathia distans                 | ł          | P        |    |
| Holoporella brunneaPPMembranipora tuberculataPPBugula neritinaPPScrupocellaria diegensisPTricellaria occidentalisPDiaperoecia californicaPEntoproctaA cluster.PBarentsia gracilis4 cluster.PEchinodermata31ChordataAscidians42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Thalamoporella californica      |            |          |    |
| Membranipora tuberculataPBugula neritinaPScrupocellaria diegensisPTricellaria occidentalisPDiaperoecia californicoPEntoproctaPBarentsia gracilis4 cluster.Echinodermata3Strongylocentrotus purpuratus3Chordata4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Holoporella brunnea             | ρ          |          | P  |
| Bugula neritinaPPScrupocellaria diegensisPTricellaria occidentalisPDiaperoecia californicoPEntoproctaPBarentsia gracilis4 cluster.Echinodermata3Strongylocentrotus purpuratus3Chordata4Ascidians4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Membranipora tuberculata        |            | P        |    |
| Scrupocellaria diegensispTricellaria occidentalispDiaperoecia californicopEntoproctagracilisBarentsia gracilis4 cluster.Echinodermata3Strongylocentrotus purpuratus3Chordata4Ascidians4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>Bugula neritina</u>          | Р          |          | Р  |
| Tricellaria occidentalisPDiaperoecia californicoPEntoproctaBarentsia gracilis4 cluster.Barentsia gracilis4 cluster.PEchinodermata31Strongylocentrotus purpuratus31Chordata42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Scrupocellaria diegensis        |            |          | P  |
| Diapercecta californicoPEntoproctaPEntoprocta4 cluster.Barentsia gracilis4 cluster.Echinodermata3Strongylocentrotus purpuratus3Chordata4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>Tricellaria occidentalis</u> |            | <u>Р</u> |    |
| Introprocta4 cluster.PBarentsia gracilis4 cluster.PEchinodermata<br>Strongylocentrotus purpuratus31Chordata<br>Ascidians42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u> </u>                        | Р          |          |    |
| Durentistu gruettis4 cluster.PEchinodermata<br>Strongylocentrotus purpuratus31Chordata<br>Ascidians42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Banenteia anacitia              |            |          |    |
| Echinodermata<br>Strongylocentrotus purpuratus31Chordata<br>Ascidians42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 | 4 ciuster. |          | P  |
| Strongylocentrotus purpuratus31Chordata<br>Ascidians42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Echinodermata                   |            |          |    |
| Chordata<br>Ascidians 4 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Strongylocentrotus purpuratus   | 3          | 1        |    |
| Ascidians 4 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Chordata                        |            |          |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ascidians                       | 4          |          | 2  |

# Table 27. Animals found along the Los Angeles Harbor Breakwater Diver Survey Stations. January 4, 1977.

170

P = Present

|                                                                                                                                         | S                      | tation      | I S                   |
|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------|-----------------------|
| Species                                                                                                                                 | Hl                     | На          | Нb                    |
| PORIFERA                                                                                                                                |                        |             | 1                     |
| COELENTERATA<br>Hydractinea, sp.<br>Sertularella, sp.                                                                                   |                        | many<br>7   |                       |
| ANNELIDA<br>Polychaeta, unid.<br>Serpulidae, unid.                                                                                      | 4                      | 2           |                       |
| ENTOPROCTA<br>Barentsia discreta                                                                                                        |                        | abunđ.      |                       |
| MOLLUSCA<br>Chama pellucida<br>Crepidula perforans<br>Crepipatella lingulata<br>Hiatella arctica<br>Mitrella carinata<br>Mytilus edulis | 1<br>1+she11<br>2<br>1 | 1<br>8<br>2 |                       |
| <b>BRYOZOA</b><br>Celleporaria (Holoporella) brunnea<br>Membranipora tuberculata<br>Thalamoporella californica                          |                        |             | abund.<br>abund.<br>l |
| ARTHROPODA<br>Gammaridea, unid.<br>Ammothella tuberculata<br>Cancer anthonyi<br>Tanystylum intermedium                                  | 4                      | 1<br>1<br>1 |                       |
| CHORDATA                                                                                                                                | abund.                 | 1           |                       |

Table 28. Animals from Los Angeles Breakwater Diver Survey - March 29, 1977.

|                                                                                                                                | S                | tatio                                 | n s      |
|--------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------|----------|
| Species                                                                                                                        | Hl               | На                                    | НЪ       |
| PORIFERA                                                                                                                       |                  | 5                                     |          |
| COELENTERATA                                                                                                                   |                  |                                       |          |
| Astrangia lajollaensis<br>Clavularia?, sp.<br>Sertularella, sp.                                                                | 6<br>4           | abund.                                |          |
| ANNELIDA                                                                                                                       |                  |                                       |          |
| Polychaeta, unid.<br>Serpulidae, unid.<br>Spirorbus?, sp.                                                                      | 1                | 6                                     | 1        |
| MOLLUSCA                                                                                                                       |                  |                                       | <u> </u> |
| Aegires albopunctatus<br>Crepidula onyx<br>Crepipatella lingulata<br>Mitrella carinata<br>Nasserina, sp.<br>Tricolia pulloides | 1<br>1<br>1      | 9                                     | 3        |
| ARTHROPODA                                                                                                                     |                  | · · · · · · · · · · · · · · · · · · · |          |
| Gammaridea<br>Balanus tintinnabulum?<br>Cancer anthonyi                                                                        | 1                | 9<br>1                                | 11       |
| cancer, sp.<br>Caprella verrucosa<br>Pugettia dalli<br>Tetraclita squamosa                                                     |                  |                                       | 1<br>3   |
| CHORDATA                                                                                                                       |                  |                                       | ·        |
| Ascidacea<br>Ciona intestinalis                                                                                                | 1 1              |                                       | 1        |
| SRYOZOA (unid.)<br>Scrupocellaria diegensis                                                                                    | abund.<br>abund. | few                                   | abund.   |

# Table 29. Animals from Los Angeles Breakwater Diver Survey - June 29, 1977.

| Table | 30. | Animals from Los Angeles Breakwater Diver Survey - |  |
|-------|-----|----------------------------------------------------|--|
|       |     | December 22, 1977.                                 |  |

|                                                                                                                                                             | St                                        | ation                                    | S                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------|---------------------------------------------------------|
| Species                                                                                                                                                     | н1                                        | Ha                                       | Hb                                                      |
| PORIFERA                                                                                                                                                    |                                           |                                          | 1                                                       |
| ?Haliclona, sp.                                                                                                                                             | 1                                         |                                          |                                                         |
| ANNELIDA<br>Polychaeta (unid.)<br>Serpulidae (unid.)                                                                                                        |                                           |                                          | 1<br>1                                                  |
| ENTOPROCTA                                                                                                                                                  |                                           |                                          |                                                         |
| Barentsia discreta                                                                                                                                          |                                           | many                                     |                                                         |
| MOLLUSCA                                                                                                                                                    |                                           |                                          |                                                         |
| Anomiidae<br>Crepipatella lingulata<br>Lacuna unifasciata<br>Leptopecten latiauratus<br>Mitrella carinata<br>Mytilus edulis<br>Ocenebra poulsoni            | 17                                        | 1<br>38<br>1                             | 1<br>2<br>1<br>21<br>2                                  |
| BRYOZOA                                                                                                                                                     |                                           |                                          |                                                         |
| Amathia distans<br>Celleporaria brunnea<br>Crisulipora occidentalis<br>Membranipora tuberculata<br>Thalamoporella californica                               | 6 colonies<br>17 colonies<br>105 colonies | 14 colonies<br>8 colonies<br>52 colonies | 3 colonies<br>2 colonies<br>127 colonies<br>18 colonies |
| ARTHROPODA                                                                                                                                                  |                                           |                                          |                                                         |
| Balanus tintinnabulum<br>"Dynamenella" sp.<br>Gammaridea<br>Pugettia richi<br>Taliepus nuttalli<br>Tantystylum intermedium<br>Tetraclita squamosa rubescens | 1<br>18<br>1                              | 3                                        | 1<br>14<br>1<br>1<br>2                                  |
| ECHINODERMATA<br>Strongylocentrotus purpuratus                                                                                                              | 5                                         |                                          |                                                         |

## .

MARINE STUDIES OF SAN PEDRO BAY, CALIFORNIA. PART 15. DECEMBER 1978

F. FISH FAUNA

Fish fauna of the <u>Sansinena</u> site area had not been surveyed systematically by trawling as had the fauna of other areas in outer Los Angeles and Long Beach Harbors in years previous to the explosion. Data from Chamberlain (1973, 1974 and 1976) and Stephens, Gardiner and Terry (1973) and Stephens, Terry and Allen (1974) were summarized in AHF (1976).

Numbers of fish in the outer harbor area reached higher than 3000 fish per trawl in the summer and fall of 1973 but dropped to below 200 by January 1974. The counts reached only about 700 per trawl in the fall of 1973 (AHF, 1976). After that counts dropped down to as low as 1-2 fish in 1975-76 (J.S. Stephens, pers. comm.).

On April 8 and 15, 1977 Dr. Stephens of Occidental College and his students made several trawls in the area from outside Fish Harbor toward Angels Gate (Figure 102) and parallel to the <u>Sansinena</u> site toward the southeast (Trawls 1 and 2). They also trawled off Whites Point, west of outer Cabrillo Beach on April 15 and the resulting data are presented in Table 32. Numbers of individuals per trawl and their average size in millimeters are given. The clear division in April 1977 was between harbor species and coastal Whites Point species, rather than any obvious differences between the in-harbor areas close to the <u>Sansinena</u> and away from it, or between the dates surveyed in April.

The most numerous species in the harbor in April 1977 was Genyonemus lineatus, the white croaker, which appears to flourish in the soft bottom, calmer water environment as an omnivore. In 1972-75 it composed 56% of the outer harbor fish (AHF, 1976). Phanerodon furcatus (white surfperch) was second in the April 1977 survey, whereas it had been fourth in the 1972-75 surveys, having 3.9% of the total during those years. Symphurus atricauda (California tonguefish) was third in the April 1977 survey, whereas it had been the second most common fish in the 1972-75 surveys, with 10.9% of the total during the earlier period.

Due to the limited access to the area more extensive surveys could not be carried out in the spring and funds were not available for summer or fall surveys.

Fishes were surveyed quarterly at the San Pedro Breakwater from June 1977 to June 1978 by Harbors Environmental Projects as part of a contract for construction and maintenance of a kelp bed for the Los Angeles Harbor Department. The project, created as a mitigation measure, attracted a variety of fish to the area. The complete study of the kelp bed (HEP, 1978) suggests that there was little or no inhibitory effect on its growth from the residual oil from the Sansinena.

The only prior records available to HEP for the breakwater area were qualitative, made by Mary K. Wicksten in the course of invertebrate research there. These data, previously unpublished, are presented in Table 32.

The kelp bed diver surveys were much more intensive and thus indicate the nature of the fish population more accurately. Comparison of species lists with the trawl data also reflects the difference in habitat sampled and the trawl method as compared with diver surveys of the breakwaterkelp habitat. Divers surveying the kelp included C.R. Feldmeth (HEP and Claremont Colleges), M.K. Wicksten (HEP), and G. Troyer (Pomona College). These data are presented in Table 33.

A check list of fishes from the harbor by Chamberlain (AHF, 1976) is presented for reference to names and ranges, as Table 34.



Figure 102. April Fish Trawls, 1977.

| SPECIES                      | Stn. 1<br>Apr. 8<br>#I S | Stn. 2<br>Apr. 8<br>#I 5              | Stn. 1<br>Apr. 15<br>#I S | Stn. 2<br>Apr. 15<br>#I S | Wht.Pt.<br>Apr. 15<br>#I S |
|------------------------------|--------------------------|---------------------------------------|---------------------------|---------------------------|----------------------------|
| Chilara taylori              |                          |                                       |                           |                           | 2/225                      |
| Citharichthys sordidus       |                          |                                       |                           |                           | 2/123                      |
| Cymatogaster aggregata       | ;                        | 1/85                                  |                           |                           |                            |
| Embiotoca jacksoni           |                          |                                       |                           | 1/120                     |                            |
| Genyonemus lineatus          | 80/155                   | L L L L L L L L L L L L L L L L L L L | 29/143                    | 1/210                     |                            |
| Glyptocephalus zachirus      |                          |                                       |                           | 1                         | 2/170                      |
| Hippoglossina stomata        |                          |                                       |                           | ! !                       | 2/100                      |
| Hypsoblennius gilberti       |                          | 1/55                                  |                           | :                         |                            |
| Microstomes pacificus        |                          |                                       |                           | !                         | 46/113                     |
| Odontopyxis trispinosa       | 1                        |                                       |                           |                           | 1/100                      |
| Otophidium scrippsi          | 1                        |                                       |                           | ļ .                       | 2/148                      |
| Paralabrax clathratus        | 1                        | 1/60                                  |                           |                           |                            |
| Paralabrax nebulifer         |                          | 1/245                                 |                           |                           |                            |
| Paralichthys<br>califormicus |                          |                                       | 1/90                      |                           |                            |
| Phanerodon furcatus          | 1/170                    |                                       | 4/128                     | 13/129                    |                            |
| Sebastes dalli               |                          |                                       |                           |                           | 15/86                      |
| Sebastes goodei              |                          | i<br>L                                |                           |                           | 7/106                      |
| Sebastes saxicola            |                          | 1/80                                  |                           |                           |                            |
| Seriphus politus             | 1/135                    |                                       |                           | 1                         |                            |
| Symphurus atricauda          |                          | 1/140                                 | 2/150                     | 3/113                     |                            |
| Syngnathus sp.               |                          |                                       | 1                         |                           |                            |
| Xeneretmus latifrons         |                          |                                       |                           | 1                         | 4/98                       |

Table 31. Fish from the <u>Sansinena</u> area, San Pedro, compared with the White's Point area.

I = number of Individuals

S = Size (in millimeters) average

Station 1 (control) from Fish Harbor Breakwater toward Angels Gate. Station 2 parallel to <u>Sansinena</u> south of channel marker buoys. Table 32. Fishes Observed Along the San Pedro Breakwater and Fishing Pier, 1973-1974\*

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |         |        | ŀ          |             |                  | ' I<br>I<br>I   |            | •      | -                                                                                                                                                                                                                                  |        |          | ļ        | -            | 101      | <b>[</b> - |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|--------|------------|-------------|------------------|-----------------|------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|----------|--------------|----------|------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1973            |         | 4      |            |             |                  | 6.15            |            |        |                                                                                                                                                                                                                                    |        |          |          | -<br>-<br>-  |          | Ţ          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Apr Sep Oct     | Mar     | é D    | ť          | Jan F       | <sup>sb</sup> Ar | ř<br>Ma         | ö          | Nov    | un de la compañía de<br>La compañía de la comp | Mar    | pr Ma    | No.      |              | ≰!<br>al | -<br>      |
| Amphistichus argenteus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |         |        |            |             | щ                |                 |            |        |                                                                                                                                                                                                                                    |        | ы        |          |              | -        | <br>£      |
| Brachyistius frenatus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |         | NR     |            |             |                  |                 |            |        | NR                                                                                                                                                                                                                                 |        |          |          |              | -<br>0   | <br>4      |
| Citharichthys sp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t k             |         |        |            |             |                  |                 |            |        |                                                                                                                                                                                                                                    |        |          |          |              | 2        | м          |
| Clinocottus analis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 114             |         | ρ      |            |             | œ                |                 |            |        | д                                                                                                                                                                                                                                  |        |          |          |              | U,       | <u>م</u>   |
| Coryphopterus nicrossi<br>Domofichthus naced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NR              |         | AR 1   |            |             | 2                | NE              |            |        | NR                                                                                                                                                                                                                                 |        |          | đΝ       | ) · · ·      |          | Ц.         |
| Embriotoca jacksoni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |         |        |            | ΝΡ          |                  | 1               | :          | :      | NR                                                                                                                                                                                                                                 | Ę      | IN       | F        |              | l<br>An  | <br>ג      |
| Embiotocidae (unid.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NR NR           | NR      | -      | R<br>H     | Z           | с                | IN              | d N.       | ЧN     | <del>_</del>                                                                                                                                                                                                                       | r<br>Z | z        | Ъ,       |              |          |            |
| Engraulis mordax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |         |        |            |             | ,                | 1               | ĥ          | ſ      |                                                                                                                                                                                                                                    | ¢      |          | ρ        |              | ρ        | <u>,</u> ძ |
| <i>Cibbonsia</i> sp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |         | 4      |            |             | <u>م</u>         | 7               | Ъ          | ų      |                                                                                                                                                                                                                                    | ų      |          | ч        |              |          | an<br>an   |
| Girella nigricans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |         |        |            |             |                  |                 |            |        |                                                                                                                                                                                                                                    |        |          | ر        |              | _        | í          |
| Gobiesox rhessodon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |         |        |            |             |                  |                 |            |        |                                                                                                                                                                                                                                    |        |          | נ        |              |          |            |
| Heterostichus rostratus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |         | 4      | 4          |             | A                |                 |            | i      |                                                                                                                                                                                                                                    | ,      | ſ        |          | - •          | F        | : P        |
| Hypsoblennius gilberti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ц               |         |        | <u></u> щ  |             |                  | Γ.              |            | ሲ      |                                                                                                                                                                                                                                    |        | ÷.       |          |              | -<br>Կ   | u N        |
| Hypsurus caryi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NR              |         |        |            |             |                  | "               |            |        |                                                                                                                                                                                                                                    | þ      |          |          | . <u>.</u>   | -        |            |
| Leptocottus armatus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |         |        |            |             |                  | ц ;             | . 1        |        | (<br>(                                                                                                                                                                                                                             | ι, μ   |          |          | нц °         | _ {      |            |
| Neoclinus stephensae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |         |        |            |             |                  | ň               | .,         |        | ₹ (                                                                                                                                                                                                                                | יה     |          |          |              | ž        | <br>} p    |
| Orthonopias triakis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ¢               | 8       | ഷ      | ж          | ц           | ₽.<br>EX         | н<br>Ц          | <u>ዋ</u>   | ሲ      | r<br>                                                                                                                                                                                                                              | יד     |          |          |              |          | <br>4      |
| Oxulebius pictus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | æ               | 84      |        |            |             |                  |                 |            |        | ;                                                                                                                                                                                                                                  |        |          | ίΝ.      | <sup>2</sup> | ą        | цр         |
| Paralabrax clathratus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NR              | NR      | NR     | NR<br>NR   | ЛŖ          | Ř                | z<br>Ez         | ž          |        | Y<br>Z                                                                                                                                                                                                                             |        |          | Z        | 5<br>        | 4        | SN S       |
| Paralabrax nebulifer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NS              |         |        |            |             |                  | ;               | 6          |        | an                                                                                                                                                                                                                                 |        |          |          |              |          | AN<br>AN   |
| Phanerodon funcatus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NR              |         |        |            |             |                  | z               | น          |        |                                                                                                                                                                                                                                    |        |          |          |              |          | Ц<br>С     |
| Pleuronectidae (unid.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SR              |         |        |            | с<br>К<br>К |                  | t<br>f          | ţ          | ն<br>Ծ |                                                                                                                                                                                                                                    |        | đ        |          | <u></u>      | م        | í          |
| Pleuronichthys coenosus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |         |        |            |             |                  | ה נ<br>קינ<br>ה |            | 1 C    |                                                                                                                                                                                                                                    |        | 1 P<br>0 |          | - 0          | , p.     |            |
| Psittichthus melanostictus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |         |        |            |             |                  | л<br>Л          | 1,         | D<br>D |                                                                                                                                                                                                                                    |        | 5        | C        | ו<br>        | •        | ,          |
| Sciaenidae (unid.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NS              |         | SN     |            |             | ſ                |                 | ſ          |        |                                                                                                                                                                                                                                    | þ      |          | c<br>م   | ַ<br>ה       | Ó        | ρ<br>Γ     |
| Scorpaena guttata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ж<br>Ж          |         | r.     |            |             | ч                |                 | ы, р<br>,  | ç      | <u>م</u>                                                                                                                                                                                                                           | 4 4    |          | 4<br>4 4 |              | . a      | Ĺρ         |
| Scorpaenichthys marmoratus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>م</u>        | -       |        |            |             |                  | ц.              | ц<br>ъ. 1  | ч      | ц<br>                                                                                                                                                                                                                              | L,     |          | 4        |              |          |            |
| Sebastes sp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |         |        |            |             |                  | _               | <b>-</b> . |        |                                                                                                                                                                                                                                    |        |          |          |              |          | NR         |
| Sebastes dalli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |         |        |            |             | ļ                |                 |            |        | d N                                                                                                                                                                                                                                |        |          |          |              |          | NR         |
| Sebastes mystinus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NR NR           | NR      |        |            |             | 4                |                 |            |        |                                                                                                                                                                                                                                    | 0N     |          |          |              | Ē,       | NR         |
| Sebastes servanoides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |         |        |            |             |                  |                 |            |        |                                                                                                                                                                                                                                    | 4      |          |          | •            | :        |            |
| Seriphus politus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NSN             |         |        |            |             |                  |                 |            |        |                                                                                                                                                                                                                                    |        |          |          | -            |          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N<br>C          | sand be | low    | -<br>oilin | ds<br>S     |                  | *               | Inció      | lental | fish                                                                                                                                                                                                                               | data   | court    | cesy c   | of Dr        | . Ma     | ry K.      |
| A = amouy атуас<br>та in hattles/rans/shells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ۱۱<br>۲۰۰۰ ۲۰۰۰ | on roc  | e<br>B | reakw      | ater)       |                  | -               | Wicks      | ten;   | taker                                                                                                                                                                                                                              | durj   | ng SC    | UBA C    | ns ro        | orke     | Ч          |
| <pre>BC = 10 bocces/cmb/succes/<br/>C = 00der cobble</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AR =            | among   | cocks  |            |             |                  | •               | obser      | vatio  | ıs of                                                                                                                                                                                                                              | invei  | tebra    | tes.     |              |          |            |
| F = caught by pier fishern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | men NR =        | near ro | ocks   |            |             |                  |                 |            |        |                                                                                                                                                                                                                                    |        |          |          |              |          |            |
| P = on pilings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ເ<br>ເ          | on san  | Ē      |            |             |                  |                 |            |        |                                                                                                                                                                                                                                    |        |          |          |              |          |            |
| when the state of | ∎<br>SP ∎       | sand b  | elow   | pilin      | gs          |                  |                 |            |        |                                                                                                                                                                                                                                    |        |          |          |              |          |            |
| AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = <u>30</u>     | over s  | and    |            |             |                  |                 |            |        |                                                                                                                                                                                                                                    |        |          |          |              |          |            |

Table 33. Fish Census for the San Pedro Breakwater, 1977-1978. Los Angeles Harbor Department/Harbors Environmental Projects, Kelp Transplant Project.

| SPECIES (Common<br>name)* J | ul 15 | Aug 19 | Sep 21 ( | oct 28 | Nov 30 | Dec 19 | Jan 24 | Feb 21 | Mar 29     | Apr 27 | May 18 | Jun 13 |
|-----------------------------|-------|--------|----------|--------|--------|--------|--------|--------|------------|--------|--------|--------|
| Barred surfperch            | 9     | 9      |          |        | 2      |        | 0      | ч      |            |        |        |        |
| Black surfperch             |       | 01     | 'n       | 11     | -      | 10     | 2      |        | 13         | 9      | 22     | 14     |
| Blackeye goby               |       |        | ч        |        | m      | Г      |        | -      | <b>-</b> 4 |        |        | ra -   |
| Blacksmith                  | 13    | 4      |          | 96     | 80     | N      | 9      | 20     | õ          |        | 50     |        |
| Blue rockfish               |       | ŝ      | 6 juv    | 4      | ষ      | 1      | 1      | 22     | 'n         |        |        | 10     |
| Calico rockfish             |       |        | 100's    | 12     | m      |        |        | 13     |            |        |        |        |
| Cusk eel                    |       |        |          |        |        |        |        |        |            |        |        |        |
| Diamond turbot              |       |        |          |        |        |        |        |        |            |        |        |        |
| Garibaldi                   |       |        |          | 1      | 8      |        |        | -1     |            |        |        | -4     |
| Giant kelpfish              |       | 7      |          |        |        | 1      | п      |        |            |        |        |        |
| Halfmoon                    |       |        |          | ٦      |        | 1      |        |        |            |        |        | ļ      |
| Kelp bass                   | 6     | 16     | 14       | 4      | 6      | Ś      | Ŋ      | œ      | 15         | m      | 27     | 45     |
| Kelp greenling              |       |        |          |        |        |        |        |        |            |        |        |        |
| Kelp rockfish               |       |        |          |        |        |        |        |        | 4          |        |        | ¢      |
| Kelp surfperch              | 9     | 12     | 25       | თ      | 14     |        | 58     | 60     | 19         | 44     | 200    | æ      |
| Kelpfish                    |       |        |          | H      | H      | I      |        |        | ų          | ſ      | ç      |        |
| Olive rockfish              |       | ę      |          |        | I      | -      | 12     |        | Ø          | -      | 7      |        |
| Opaleye                     |       |        | m        |        | Н      |        |        |        |            |        |        |        |
| Painted greenling           |       |        |          |        |        | I      | ,      |        | 1          | 1      | Ľ      | t      |
| Pile surfperch              | Ч     | m      | 7        | 9      | 2      | Ś      | 4      | 4      | m          | n      | 'n     | - 0    |
| Queenfish                   |       |        | 10-15    |        |        |        |        |        |            | •      |        | n      |
| Rainbow surfperch           |       |        |          | و      |        |        |        |        |            | H      |        |        |
| Rubberlip surfperch         |       |        |          |        |        |        | Ч      |        |            |        |        |        |
| Sand bass                   |       |        |          |        |        |        |        |        |            |        |        |        |
| Scorpionfish                |       |        |          |        |        |        |        |        |            |        |        |        |
| Senorita                    | г     |        |          |        |        |        |        |        |            |        |        |        |
| Sheephead                   |       | 2      |          |        |        |        |        |        | Ч          |        |        |        |
| Shiner surfperch            |       |        |          |        |        | Q      | m      |        |            |        | 6      |        |
| Snubnose sculpin            |       |        |          |        |        |        |        | (rī)   |            |        |        |        |
| Topsmelt                    |       |        |          |        |        |        |        |        |            |        |        |        |
| Treefish                    | 1     |        | Ч        |        | ŝ      | ა      | -      | 7      |            |        | ഗ      |        |
| White surfperch             | 18    | 4      |          | m      | 4      | q      | 10     | 9      | æ          | 'n     | 14     | ~      |
| Yellowfin croaker           |       |        |          |        |        |        |        |        |            |        |        |        |
| Yellowfin fringehead        | 1     |        |          |        |        |        | Ч      |        | 1          |        |        |        |

\* See Table 35 for scientific names.

TABLE 34. COMMON AND SCIENTIFIC NAMES OF FISH

#### PHYLUM CHORDATA

#### CLASS CHONDRICHTHYS - CARTILAGENOUS FISHES

Order Heterodontiformes

FAMILY HETERODONTIDAE - Bullhead Sharks

#### Order Squalifornes

PANILY CARCHARMINIDAE + Requiem Sharks

Soupfin shark, . . Galaophinus zygopturus Jordan & Gilbert Chile and Peru to Northern British Columbia, but not in the tropics. Near water surface. Los Angeles-Long Beach Harbor: 54.

- Brown smoothhound . . . . . . . . Musislus henlet (Gill) Gulf of California to Humboldt Bay, California. Shallow. Los Angeles-Long Beach Harbor: NLA. Sl.

FAMILY SOUALIDAE - Dogfieb Sharks

FAMILY SQUATINIDAE - Angel Sharks

Order Rajiformes (Batoidei)

FAMILY PLATYRHINIDAE - Thornbacks\*

Thornback. Platyrkinoidis triseriata (Jordan & Gilbert) Baja Californis to San Francisco. Shallow to 150 feet. Los Angeles-Long Beach Harbor: BS, Sl.

FAMILY RHINOBATIDAE - Guitarfishes

FAMILY TORPEDINIDAE - Electric reys

FAMILY RAJIDAE - Skates

FAMILY DASYATIDIDAE\* - Stingrays

- Diamond stingray. Dasyatis dipterura (Jordan & Gilbert) Paita, Peru, to Kyuhuat, British Columbia. Shallow to 55 feet. Los Angeles-Long Beach Harbor: BS, S3, S4.
- California butterfly ray. . . Gymmura marmorata (Cooper) Peru to Point Conception. Shallow bays and beaches. Los Angeles-Long Beach Herbor: B5, 54.

FAMILY MYLIOBATIDAE - Eagle Rays

Order Chimaeriformes

#### FAMILY CHIMAERIDAE - Chimaeras

CLASS OSTEICHTHYS - BONY FISHES

Order Anguilliformes (Apodes & Lyoneri;

FAMILY MURAENIDAE - MOTAY4

Order Clupelformes

FAMILY CLUPEIDAE - Herrings

Pacific sardine. . . . Sardinaps sagas sarriler Jenyns Guaymas, Mexico, to Kamchetta. Epipelagic. Los Angeles-Long Beach Narbor: BS, S3.

FAMILY ENGRAULIDIDAE - Anchovies

Anchoveta. . . . . . . . Centengraulis mystilitus (Gunther) Sechura Bay, Peru, to Los Angeles Harbor. Los Angeles-Long Beach Harbor: Not taken, may be introduction [see Miller 4 Lea, 1972, p. 56).

- Pacific Herring, . . Cluped horengue patlasi Valenciennes Northern Baja California to Arctic Ocean and Japan. Inshore schooling fish. Los Angeles-Long Beach Harbor: BS.
- Northern Anchovy . . . . . . . . Engravits mandar Girard Cape San Lucas, Baja California to Queen Charlotte Taland, British Columbia. Los Angeles-Long Beach Marbor: BS, S1, S3, T3-T16, Common.
- Slough anchovy . . . . . . Anchos dilicarissimalGiraid Magdalena Bay, Baja California to Belmont Shores, Long Beach Harbors. Eduaries and bay backwaters. Long Angeles-Long Beach Harbor: B5, Té, 78, Tli.

Order Salmoniformes

FAMILY SALMOWIDAE - Salmons and Trouts

Cobo (Silver) salmon - . . - Graburgarchus lisutan (Walboum, Chamalu Bay, Baja California to Bering Sea 10 Japan. Anadromous. Los Angeles-Long Beach Harbor: Sl. Fait.

Order Myctophiformes

PAMILY SYNODONTIDAE - Lizardfishes

California lizardfish. . . . . Synoduc lucifects (Ayres) Guaymes, Mexico, to San Francisco. 5 to 150 feet. Los Angeles-Long Beach Harbor: S1, S4, 74-77, T9. T11, T14, T16, UAG.

Order Batzachoidiformes

FAMILY BATRACHOIDIDAE - Toadfishes

- Specklefin midshipman . . Porichthys myriaster Hubbs & Schultz Maodalena Bay, Baja California to Point Conception. California. Shallow to 414 feet. Los Angeles-Long Beach Harbor: D5, HLA, S1, S3, S4, T2-T17, Common.

Order Gadiformes (Anscanthini)

FAMILY GADIDAE - Codfishes

FAMILY OPHIDIIDAE - Cusk-eels

Order Atheriniformes

#### FARILY BELONIDAE - Needlefishes

California meedlefish. . . . . Strongwipru Prilis (Giraid) Peru to San Francisco. Shallaw to about 300 feet Los Angeles-Long Beach Harpor: Belmont shore. Surmer 1972, Beach Seine, Occidental College.

#### TABLE 34 (CONTINUED)

#### TAMILY CYPRINODONTIDAE

California Killifish. . . . .fundulus parvipinnis Girard Common in Bays of Southern California. Los Angeles-Long Beach Karbor: BS.U&G.

FAMILY ATHERINIDAE - Silversides

Jacksmelt

. .Laurasthas tenuis (Ayras)

Order Gasterosteiformes

FAMILY SYNGNATHIDAE - Pipefishes

Nelp Pipetlah- -

. . . . . . . . . Syngmathum mp. Pipefish. B5.S3.T6.T7.T0.T13.T16.

Order Perciformes (Percomorphi: Acanthopterygii)

FAMILY SERRANIDAE - See Danses

Spotted sand bass .Paralabras margulofsscietxe(Steindachner) Masstian, Mexico, to Montarey, California, including Guif of California. To 200 feet. Los Angeles-Long Beach Harbor: BS, DVL. GNL, MLA, HLB, HLC, HLD, SL, S1 (Fish Harbor: Terminel Island). T14 (only one fish taken). Common.

FAMILY BRANCHIOSTEGIDAE - Tile fishes

ean whitefish. . . . .Cauloistilus princeps(Jenynz) Paru to British Columbia. Surface to jog famt. Los Angeles-Long Beach Harbor: 93, 84. Ocean whitefish.

PANILY CARANGIDAE - Jacks and Pompanos

Jack Mackerel-

PANILY POMADASYIDAE - Grunts

FAMILY SCIANIDAE - Croakers" or Drums

Magdalena Bay, Baya California to Point Conception. Surface to 150 feet. Los Angeles-Long Seach Marbor: BS, DV1, S1, S3, T11, (only one fish taken in 46 travis).

- Whate seabass
- White croaker.

- California corbină \_\_\_\_\_Nenticirrhus undulatus (Girard) Gulf of California to Point Conception. Surface to 45 Cest. Los Angeles-Long Beach Harbor: 85, HLA, SJ, 54.
- Queentish Common.
- lowfin croaker . . . Jobring rongeder Jordan & Gilbert Gulf of California to Point Conception. Surface to 150 feet. Los Angeles-Long Basch Harbor: BS, 51. Yallowfin croaker

TANTIN RYPHOSICAE - Sea Chubs

- Girella nigricane (Ayres) Cape San Lucas, Saja California to San Francisco. Intertidal to 95 feet. Los Angeles-Long Beach Harbor: DVL, GWL, SL, SL, U4G. Opaleye.
- ,Nedialung californiensis(Steindachner) Helfmoon Gulf of California to Rismath River. Sufface to 130 feet. Los Angeles-Long Beach Marbor: DV1, GN1, S1. FAMILY EMBIOTOCIDAE -Surfporches
- Calico surfparch
- Shicer surfparch
- Pile surfperch
- Black surfporch
- Maileye suffperch ..., Syperprosopon argumtese Gibbons Point San Romarito, Baja California to Vancouver Island. Sufface to 60 feet. Los Angeles-Long Beach Marbor: BS, BLA, NLD, NLE, S1, S3, S4, T1, T12, T13, T14, Common.
- Dwarf Aurfperch Nicrometrue minimus (Gibbons) Cedros Island, Baja Californoa to Bodega Bay. Tide-pools to 30 feet. Los Angeles-Long Beach Harbor: BS.
- Averagiz
- Ik surfperch., Zalambius romadaus(Jordan & Glibert) Guif of Californis and San Cristobal Bay, Baja Cali-fornis to Drakes Bay. 10 to 100 feet. Los Angeles-Long Beach Harbort S4. Fink surfperch.

PANILY PONACENTRIDAE - Damselfishes

- Blacksmith.
- Garibaldi .

PANILY LARBIDAR - Wrasses

TABLE 34(CONTINUED)

- FAMILY LUGILIDAE Mullets

PAMILY SPHYRAENIDAE - Barracudas

PANILY POLYNEMIDAE - Threadfing

FAMILIY CLINIDAE - Clinida

- Giant kelpfish .
- Yellowfin fringehead . . . . . . Neoslinus scephensos Hubbs Point San Hipolito to Monterey 10 to 90 feet. Los Angeles-Long Beach Harbor: DVI (sight record only).

FAMILY BLENNIIDAE - Combtooth blennies

Mussell blenn

FAMILY GOBITDAE - Gobles

FAMILY SCOMBRIDAE - Mackerels & Tunas

- Loomanytoun Gulf of Celifornis to Soquel. Nearshors pelagic fish. Los Angelas-Long Beach Harbor: BS. (Lockington)

FAMILY STROMATEIDAE - Butterfish

- - FAMILY SCORPABNIDAE Rockfishes
- Brown rockfish
- Calico rockfish . . . Sebestes dallii(Eigenmann & Beeson) Sebastien Viscaino Bay, Baja California to San Fran-cisco. 60 to B30 feet. Los Angeles-Long Beach Harbor: \$4.
- Chilipeppar . . .Sebastas goodei(Eigenmann & Eigenmann) Nagdalana Bay, Baja California to Vancouver Island. Surface to 660 feet. Los Angeles-Long Beach Harbor: T3, T5.
- Vermilion rockfish . Sabartas ministus (Jordan & Gilbert) San Benito Telands, Baja California to Vancouver Is-land, British Columbia. Shallow to 660 feet. Los Angeles-Long Beach Werbor: T3-T9, T16.
- e rockfish . . . Sebastes mystinus(Jordan & Gilbert) Point Santo Tomas, Baja California to Bering Sea. Surface to 300 feet, Los Angeles-Long Beach Harbor: DV1 (sighted only, not taken in 46 trawls), SJ. Blue rockfish
- Boccacio
- Grass rockfish . Sebaates pastrelliger(Jordan & Gilbert) Playa Maria Bay, Baja California to Yaquina Bay. Oregon. Intertidal to 150 feet. Los Angeles-Long Beach Harbor: DV1, MLC, 51.
- Flag rockfish . . .Sebartes rubrivinctus (Jordan & Gilbe Cape colnett, Baja California to Aleutian Islands. 100 to 600 feet. Los Angeles-Long Beach Harbor: TR (only one fish taken in 46 travis). Sebastes rubrivinctus (Jordan & Gilbert)
- Olive rockfich .5rbastes serranaides(Eigenmann & Eigenmann) San Benito Island, Baja California to Redding Rock, Del Norte County. Surface to 480 feet. Los Angeles-Long Beach Harbor: DV1, GN1, T3-T9, T11, T13, T16, Common.

FAMILY REXAGRAMMIDAE - Greenlings

- Hexagrammos decagrammus(Pollos) Kelp greenling -La Jolla to Aleutian Islands, Alaska. Intertidal to 150 feet. Los Angeles-Long Beach Harbor: DVI,GNI.
- .Ophiadon elongatus Girard Linecod -Point San Carlos, Baja California to Kodiak Taland. Alaska. Surface to 1400 feet. Los Angeles-Long Beach Harbor: HLA.

FARTLY ZANIOLEPIDIDAE - Combfishes

FAMILY COTTIDAE ~ Sculping

- Bonyhead Boulpin . . . . . . . Artraine notospilotud Point San Teimo, Baja California to Puget Sound Intertidal to 150 feetl Los Angeles-Long Beach Harbor: BS, S4, TB. Artedius notospilatus Girard
- Roughback sculpin. Chitomotus pugetensia(Steindachmer) Santa Maria Bay, Baja California, Intertidal to 465 feet. Los Angeles-Long Beach Narbor; \$4, U&G.

TABLE 34(CONTINUED)

- Pecific staghorn sculpin. . . .Leptodottus armotus Girard San Quintin Bay, Baja California to Chignik, Alaska. Intertidal to 300 feet. Los Angeles-Long Beach Harbor: BS, HLA, S1, S3, T11, T12, T13, T14, Common.
- Cabezon .

FAMILY AGENIDAE - POSCHETS

Order Plearonectiformes (Neteronomete)

FAMILY BOTHIDAE - Left-eye flounders

- Pacific sanddab . . . . , Citherichthys sordidus (Girard) Cape San Lucas, Baja California to Bering Sas. 30 to 1800 feet. Los angeles-Long Beach Barbor: T13 (only one fish taken in 46 bottom trauls), Rare, U&G.
- Speckled manddeb . .CitharichtAge stigmasus Jordan & Gilbert Magdalana Bay, Baja Californis to Huntaque Island, Aleska. 10 to 1200 feet (2). Los Angelas-Long Beach Harbor: 88, S3, 72-714, 716, Common, USC.
- Res sole · · · ·
- Bigmouth sole . .Hippoplassing stamata[Eigenmann & Eigen Gulf of California to Monterey Bay. 100 to 450 feet. Los Angeles-Long Beach Harbor: 54, 16, 19, 110. .Hippoglossing stomata(Eigenmann & Eigenmann)
- California halibut .Paralishthys californicus(Ryres) Magdalana Bay, Beja California to Quilleyute River, B.C. Surface to J00 feet, Los Angeles-Long Beach Harbor: BS. MLA. MLE, S1, S3, T3, T4, T6, T7, T8, T10-T14, G16 U45, Common.

PARILY PLEURONECTIDAE - Right-eye flounders

- Petrale sole
- English sole .
- C-0 turbot. 85. Rare.
- Ifin turbot , ... Pleuronichthys discurrens Jordan 6 Gilbert San Quintin Bay, Baja California to North West Alaska. 60 to 1140 feet. Los Angeles-Long Beach Harbor: BS, S3, S4, 76-T11, T13, T14, Common. Curlfin turbot
- Hornyhead turbot. Plauromichthym varticalie Jordan & Gilbert Madgalana Bay, Baja California to Point Reys. 30 to 612 feet. Los Angeles-Long Beach Harbor: B5, 51, 53, 54, 72-714, U&G.

FAMILY CYNOGLOSSIDAE - Tonguefishes

Cellfornia tongueflsh. Symphurus stricauda(Jordan & Gilbert) Cape San Lucas, Beja California to Big Lagoon, Hum-boldt County. 5 to 276 feet. Los Angeles-Long Besch Harbor: BS, S3, S4, T2-T14, T16, T17, Common, DAG.

MARINE STUDIES OF SAN PEDRO BAY, CALIFORNIA. PART 15. DECEMBER 1978

G. IMPACT OF THE SANSINENA OIL SPILL ON THE CABRILLO BEACH AREA

## INNER CABRILLO BEACH

#### INTRODUCTION

Inner Cabrillo Beach lies southwest of the site of the explosion of the <u>Sansinena</u>, across the shipping channel. The beach is the only remaining area of intertidal sand inside Los Angeles Harbor in San Pedro. The site is a popular recreation area used for swimming, boating, water skiing, fishing, clam digging, and picnicking.

Except for pilings, docks, and the rocks of the main breakwater and jetties, inner Cabrillo Beach was the only intertidal area to receive a large part of the spilled oil from the explosion of the <u>Sansinena</u> on December 17, 1976. The observations recorded in this paper present the changes in the flora and fauna at the beach during the year following the spill and suggest ways the biota may have been affected by the oil and tar.

## METHODS OF STUDY

Observations of the area began on January 9, 1977 and continued until December 8, 1977 during tides of +2 to -2 feet. Occurrences of oil and tar, plants and animals smeared by tar, dead animals cast ashore, and locations of drift algae were recorded. Lists of readily observable plants and animals in the intertidal zone were maintained for six areas (Figure 103); the cobble(A), from the boulders of the main breakwater to the stretch of sand and cobble at the low water mark; the bend (B), the sand and rocks across from the Cabrillo Marine Museum; the beach (C), along the main parking lot; both sides of the south jetty by the floating dock (D); the rocks and sand by the floating dock (E); and Sea Scout Beach (F), in front of the Cabrillo Beach Sea Scout Base. Notes were made on any obvious increases or declines in the plants and animals, runoff of fresh water, and movements of sand. Voucher specimens of polychaetes, sponges, algae, and bryozoans were collected for identification. Color slides of the marine life and the beach were taken for reference at irregular intervals.

## DESCRIPTION OF THE BEACH

Five substrates are present at inner Cabrillo Beach. The inner side of the main breakwater consists of large, hard boulders exposed to the wind chop of the harbor. The jetties contain smaller stacked rocks protected from much action of waves. Cobble (smaller scattered rocks) occurs along the breakwater toward the Cabrillo Marine Museum. The main beach and the intertidal zone below the rocks consist of fine sand, shell chips and a few pebbles with a light covering of silt. At the -2.0 foot tide level, a bottom of sand and clay is exposed near the bend.



Although inner Cabrillo Beach is sheltered from the usual ocean waves by the breakwater, the beach is subject to frequent erosion and deposition of sand. During windy days, waves about 1 m high can break on the beach, eroding the sand and exposing shells and buried rocks. Gusty winds dry the sand and blow it into the harbor. During quiet weather, the sand accumulates in drifts. Winter storms can change the profile of the beach extensively (Straughan, 1975).

## RESULTS

### Oil, Tar, and Other Petroleum Residues

Prior to the explosion of the <u>Sansinena</u>, inner Cabrillo Beach occasionally received oil and tar from other parts of the harbor (Straughan, 1975). Oil slicks often were noticed near the boat launching dock, where recreational craft were used. Other possible sources of oil products were recreational marinas in the west harbor area, a small boat repair yard, a Navy oiler terminal and a landing for commercial sport fishing boats. Oil also may have been carried from the main channel on changing tides.

Following the explosion, shiny, iridescent oil slicks were seen at the beach on every day on which observations were made. Tar (black, sticky material) was observed as a thick, black smear across rocks of the upper intertidal zone after the initial spill and as small blobs on the sand during later months. On the beach behind piles of drift algae or in tide pools with slow circulation, a bubbly brown residue ("chocolate mousse") floated on water.

The distribution of the different petroleum residues varied from day to day (Table 35). The tar of the initial spill dried and hardened on the upper rocks, turning rusty in color at the highest tide level by August. Tar on the lower surfaces of rocks, however, collected floating debris and stayed sticky and black until November of 1977. Although the scraping of wind and waves removed much tar on exposed rocks, protected cracks and lower surfaces remained smeared throughout the period of study (Figure 2).

From January 1977 until early December the petroleum products at Cabrillo Beach seemed to dry out or be buried by sand. After windy days or rain storms, oil slicks and tar blobs were more noticeable than after periods of calm weather, although some oil always could be found at the bend. The tar on the upper rocks, except in sheltered spots, dried and was scraped away. In December, however, the entire beach was contaminated by extensive oil slicks, tar blobs, and "chocolate mousse," although there were no storms and few windy days during that part of the month. This new contamination coincided with operations using a pile driver to build a new dock at the site of the explosion, but there may have been other, unidentified sources contributing to the contamination.

Dredging during March, 1977 scooped sand from near the floating dock and dumped it on the upper beach. The dredging cleared the launching ramp until about September, by which time the dredge tailings had dried out, been blown by the wind and eroded by small waves, and had been swept over the jetty back into the boat launching area. Drifts of sand over 2 m high were noticed along the south jetty in November.

During 1977, rain was scant. Run-off of fresh water at the beach was confined to a channel along the south end of Sea Scout Beach, where water from the boat cleaning area ran into the harbor. During a short storm in August, fresh water also ran down the beach near both of the lifeguard towers.

During the period of study, the temperature of the water ranged from  $56-70^{\circ}F$  (12-20°C), with a temperature of  $15^{\circ}C$  being most common. The water usually contained floating particles and silt which reduced visibility to about one meter at best.

## Plants and Animals

Different associations of plants and animals occur at inner Cabrillo Beach according to the tidal height and the substrate. The biota of the main breakwater is typical of a protected outer coast (Ricketts, Calvin, and Hedgpeth, 1969). The barnacles Balanus glandula, Chthamalus fissus, and Tetraclita squamosa rubsecens are common, as are acmaeid limpets (Collisella digitalis and others), striped shore crabs (Pachygrapsus crassipes), and aggregated sea anemones (Anthopleura elegantissima). On the cobble, plants and animals of quieter waters occur, such as branched bryozoans (Bugula neritina), brown slipper shells (Crepidula onyx), and rock crabs (Cancer anthonyi). The hermit crab Pagurus hirsutiusculus, which tolerates silty water well, can be found by the hundreds here.

The sand has been found to contain between 26 and 31 species of segmented worms of the class Polychaeta (Straughan and Patterson, 1975; Straughan, 1975). Although only seven species were identified from the beach in 1977, dimples and marks of feeding on the sand indicated that others, too small or too deeply buried to be collected, also were present.

In the lower intertidal zone of the sandy areas, gaper clams (*Tresus* nuttalli) and hermit crabs (*Isocheles pilosus*) can be found. The snails Olivella biplicata and Nassarius fossatus plow through the sand. Small crustaceans (cumaceans and gammarid amphipods) can be common in pools.

The jetties, protected from much wave action, often have silt on the rocks. The flora and fauna of these rocks tend to be less diverse than those of the cobble except at the lowest tidal zones, where a thriving association of red algae (*Neoagardhiella baileyi* and *Gigartina* spp.), tube mollusks (*Serpulorbis squamigerus*) and bryozoans (*Bugula neritina*, *Watersipora arcuata*, and *Cryptosula pallasiana*) can be found.

On the floating dock, a fauna typical of protected piles (Ricketts et al., 1969) can be found. Great masses of bay mussels (Mytilus edulis), tunicates (Ciona intestinalis), bryozoans (Bugula neritina), and fine red algae (Polysiphonia sp.) live on the lower surfaces of the docks.

Birds rest and feed along inner Cabrillo Beach. On the harbor waters,

Forster's terns, brown pelicans, and eared grebes hunt for fish. Sanderlings, willets, black-bellied plovers, and marbled godwits forage along the sand. Hundreds of gulls often rest on Sea Scout Beach. Pigeons, crows, and barn swallows feed along the beach. Feral cats sometimes chase the birds or scavenge along the beach, as do the rats that live among the rocks of the breakwater.

#### Changes in the Plants and Animals

Observers on a boat and along the shore on December 20, the third day after the accident, reported seeing gulls with tar on their feet. Many birds near the Sea Scout base were feeding with no apparent difficulty, however. One or two grebes were reported to have died from oiling following the explosion and fire.

In January 1977 most of the barnacles, limpets and mussels of the main breakwater were coated by tar. The shells of the dead animals remained in place, still anchored by their own attachment or stuck in the tar. Moribund crabs (*Pachygrapsus crassipes* and *Cancer anthonyi*) lay in the lower intertidal zone. On the sand, dead and dying hermit crabs (*Isocheles pilosus*) were found either glued inside their shells by tar or fouled on their respiratory appendages by the sticky material. The isopod *Ligia occidentalis*, which could be found in swarms of hundreds on rocks prior to the spill, was nowhere to be seen on the inner beach.

By March, many of the dead shells had been scraped off the rocks by wind and surf. A vigorous settlement of tiny barnacles, small snails (*Littorina* spp.) and acmaeid limpets (*Collisella digitalis* and others) was observed in tar-free places. By June, most of the scraped areas were repopulated either by the animals or by the algae *Ulva* sp. and *Enteromorpha* sp. which rapidly colonize disturbed areas (Reish, 1964 and 1977).

The biota observed at the beach by July was similar to that observed prior to the spill except for the absence of *Ligia occidentalis* in its former habitats. By this time, the green alga *Ulva* sp. had created a thick green covering over the rocks. Large sea hares (*Aplysia californica*) and striped shore crabs fed on this and other algae.

Toward the end of August, *L. occidentalis* was seen in all the rocky areas of the beach, although only at the bend and near the cobble was it conspicuous. During the same time, the species occurred in swarms on outer Cabrillo Beach, on the seaward side of the main breakwater, which was not affected by the spill. The green alga *Ulva*, common throughout the rocky zones, began to turn yellow and die off.

By late October, the *Ulva* had been reduced to small tufts. Much of the dense growth of red algae had died back in the lower intertidal zone. The rocks of the upper intertidal zone bore a thick covering of large, healthy-looking barnacles and limpets except in cracks or in crevices, where thick tar remained. *Bugula neriting* and *Watersipora arcuata* became very wide-spread on protected rocks.

Throughout this time, rocks periodically covered by sand bore organisms that appeared adapted for short lives on rocks exposed from sand. The hydroid Tubularia crocea and the brown alga Taonia lennebackeriae were found on exposed rocks in sandy regions of the low tidal zone. Their appearance coincided with erosion that exposed rocks in the sandy areas.

In December, Bugula neritina became less common. Silt covered rocks in the lower intertidal zone. Dead and dying hermit crabs (Isocheles pilosus) were found in the oil-smeared sand at the bend. The fauna of the intertidal zone appeared much the same as before the spill, except for the continuing lack of life in the tar-mired cracks and overhangs, the relatively low numbers of L. occidentalis, and the hard tar clinging to the shells of barnacles and limpets that survived the initial spill. Complete lists of the organisms observed at the beach and the dates of their occurrences can be found in Tables 36 and 37.

## DISCUSSION AND CONCLUSIONS

The most obvious effect of the spill on the beach, the miring by tar of invertebrate organisms, was most serious immediately after the spill. The scouring action of natural processes appears to have removed much of the tar and weathering has dried it. Barnacles and other sessile organisms were able to resettle previously mired areas after the tar was scraped off.

The oil on the beach may have killed animals inhabiting the sand. Unfortunately, sampling of deep burrowing animals could not be done to compare the fauna with that reported previously by Straughan (1975) and Straughan and Patterson (1975). Removal of several feet of sand by bulldozers in cleanup operations, continuing dislocations of the sand due to winds and waves, and deposition of drifts of rotting Ulva sp. up to a meter high might have affected the fauna as much as or more than the deposition of oil. Harpacticoid copepods and polychaetes were abundant even under the "chocolate mousse" on the beach.

The death of the hermit crabs (*I. pilosus*) and the other crabs found on the beach after the spill and in December, 1977 may have been due to fouling of the respiratory apparatus. These crustaceans maintain a flow of water across their gills by rapid flicking of appendages in the mouth region. If these appendages cannot move, the crab suffocates. At least four of the hermit crabs found in January had the entire mouth region smeared with tar.

Barnacles, limpets, and mussels of the upper intertidal zones were probably killed by several means after miring by tar. The tar may have sealed off respiratory passages in the animals, preventing flow of oxygen to their bodies. A tight seal of tar prevented some barnacles and mussels from opening their shells. Barnacles are known to suffer from increased stress of heat (the black body effect) when their shells are coated by black tar (Straughan, 1976). The combination of the physical effects and the toxic effects of various fractions in the oil and tar killed hundreds of these sessile animals and probably was responsible for the die-off of *Ligia*  occidentalis on the inner beach while they survived on the outer beach.

The die-off of *Ligia occidentalis* might have contributed to the accumulation of rotting algae in drifts on the beach in spring and early summer of 1977. *Ulva* and *Enteromorpha* can grow rapidly in harbors, break off, die and decompose. In the absence of herbivores, the decomposing algae can cause odors and sometimes depletion of the dissolved oxygen in areas of reduced circulation of water (Reish, 1977). Although flies, sea hares, and striped shore crabs probably fed on the algae, *Ligia* is one of the most active herbivores of the upper intertidal zone. A single average *Ligia* may consume .0384 grams of brown algae (*Sargassum* sp.) per day. Since about 315 of these isopods can occur in one square meter of a favorable beach, the amount of algae consumed by these animals can be considerable (R. Brusca, pers. comm.).

The resumption of disturbances in the explosion site by the pile driving appears to have dislodged remains of tar that escaped the cleanup operations and settled on the bottom near the site of the wreck. This new dispersion of oil and tar could create further problems for the marine life by miring it, exposing it to harmful chemicals, or creating stressful situations that could prevent the organisms from spawning. New disturbances by dredging, churning by ships' propellers, storms and hot weather could cause blobs to surface and form slicks on the rocks and sand. Allowing the tar residue to dry and be scraped off the breakwater, rocks, and pilings by natural processes and letting the normal siltation of the harbor cover the tar and oil on the bottom seem to be the best means to allow the area to return to "normal" conditions.

No serious effects of the usual slicks on the biota have been detected. The flora and fauna appear to be normally diverse and numerous following recovery from the accident.

## NOTES ON EFFECTS OF THE OIL SPILL ON CRABS AT CABRILLO BEACH

A qualitative survey was made on January 15, 1977 during a low tide, along the inside beach at Cabrillo Beach, near the Cabrillo Museum in San Pedro. Abnormal behavior and casualties caused by the oil spill were noted in four species of anomuran and brachyuran crustaceans. Most obvious was damage to the sand-dwelling hermit crab, Isocheles pilosus. These animals, studied at this location during 1976, normally live in soft sand from the 0.0 foot tide level to about 25 feet deep. During low tides when they are dislodged from the sand by light surf, they are carried up the beach, but are able to return to their habitat by running or by using the chelipeds and walking legs to bury themselves and their shells in the sand within 20 seconds (Wicksten, unpubl. manuscript). Of 10 hermit crabs found on this date, two were dead, and completely "glued" in their shells by a thick coating of sticky black tar which filled the apertures of the shells. Five others had patches of tar on the eyes, antennae, chelipeds, walking legs and maxillipeds. These five wiggled when picked off the sand, but were unable to bury themselves when set on the sand. Three of these five died within 24 hours after collection. One other crab had a light smear of tar on the chelipeds, but could bury itself normally and survived up to present. Another two had no tar, buried themselves normally, and also survived.

The crabs coated with tar were observed trying to scrape it off with the walking legs, chelipeds, and maxillipeds. They were not successful - one was seen with the endopodites of the third maxillipeds stuck together.

As is normal during winter, dead post-reproductive adults of *Pugettia* producta, Cancer anthonyi, and C. antennarius were found cast ashore. However, at least five dead *Pachygrapsus crassipes* were seen, as well as live subadult Cancer antennarius and C. anthonyi in the mid-intertidal zone. One rarely finds subadults of the genus higher than the low intertidal zone, and then half-buried in sand. These crabs were sitting, poorly covered, under rocks. Large adult *Pachygrapsus crassipes* were found under cobble in the low intertidal zone, where they usually are not encountered. Considering that the nearest rocks in the higher intertidal zones, where one usually finds *Pachygrapsus*, were thickly coated with tar, the crabs may have moved to escape the tar.



#### OBSERVATIONS ON THE BIOTA OF THE CABRILLO FISHING PIER: 1977

## INTRODUCTION

The Cabrillo Fishing Pier is located 0.5 mile from the Marine Museum at Cabrillo Beach, San Pedro, California. It lies almost directly south of the site of the explosion of the <u>Sansinena</u>. The pier is available to the public for hook and line fishing and using traps to catch crabs.

## METHODS OF STUDY

Observations of the organisms present and their depths of occurrence were made while SCUBA diving on February 18, February 20, and August 26, and by snorkeling on June 29. Notes were made of any oil or tar present and possible effects of them on marine organisms. Color slides of conspicuous organisms were taken for reference with a Nikonos II camera, close-up lens, and Nikonos flash attachment.

## RESULTS

The pilings of the pier rise from a sloping sandy bottom at depths of eight to 28 feet, the end toward the Marine Museum (the west end) being the shallower one. The only petroleum residues seen on the pilings was a thick coating of sticky black tar at the high tide level. Under the tar were empty shells of barnacles (*Balanus glandula*) and bay mussels (*Mytilus edulis*), although most of the tarred zone was free of either live animals or dead shells. No evidence of resettlement of the tarred zone by plants or animals was seen during the period of study.

Below the water level, the piles normally support a biota typical of protected piles (Ricketts, Calvin, and Hedgpeth, 1969). In the first five feet under the water, barnacles (Balanus glandula), striped shore crabs (Pachygrapsus crassipes), and othre starfish (Pisaster ochraceus) are common. At about five feet, red algae, a brown alga (Desmarestia sp.), and aggregated sea anemones (Anthopleura elegantissima) occur. At 10 to 20 feet, a diverse association can be found of strawberry anemones (Corynactis californica), hydroids (Obelia sp. and others), rock scallops (Hinnites multirugosus), spider crabs (Pugettia richii and Scyra acutifrons), nudibranchs (Polycera atra and others), tunicates (Styela montereyensis and others), and small fish (Gibbonsia sp., small Scorpaena guttata and others). At depths of 20 feet or more, gorgonians (Muricea californica and Lophogorgia chilensis), decorator crabs (Loxorhynchus crispatus), and sea cucumbers (Parastichopus parvimensis) live. The sandy bottom below the pilings is inhabited by tube anemones (Pachycerianthus sp.), swimming crabs (Portunus xantusii), terebellid worms, gaper clams (Tresus nuttalli), green paper bubble shells (Haminoea virescens), and flatfishes (family Pleuronectidae). A complete list of plants and animals observed during the dives in 1977 is given in Table 3.

Observations of the fauna of the pilings during previous years suggest that much of the motile fauna moves from piling to piling, from pilings to other hard substrates, or across the sand. Opisthobranchs (nudibranchs, green paper bubble shells, and the California Navanax) may be seen by the hundreds during one dive and then be absent on the next, possibly in response to the supply of their particular prey. Their absence during one particular day of diving, therefore, probably is due to normal movements rather than to oil pollution.

Except for the barnacles and mussels of the upper intertidal zone, the attached fauna of the piling showed no effect of the oil or tar. However, many of these animals feed on particulate material suspended in the water. Contamination of the water by petroleum products could result in these organisms becoming saturated with hydrocarbons. This could create stressful conditions that would interfere with the normal life processes of the animals. Detailed studies of these animals would be necessary before one could say whether they and the organisms that prey on them are harmed by petroleum residues.



| 19  | 977 | Cobble | Bend   | Beach  | Jetty       | Launch<br>Area | SeaScout<br>Beach |
|-----|-----|--------|--------|--------|-------------|----------------|-------------------|
| Jan | 15  | Xt     |        | Xt     | Xt          | Xt             |                   |
| lar | 6   |        |        |        |             | 1              |                   |
|     | 13  | h      |        | †      |             |                |                   |
| Apr | 14  | Xt,o   | Xc,0   |        |             | Xt             |                   |
|     | 17  | Xt,o   | Xc,o   |        |             |                | ··· ··· ·-        |
| lay | 1   | Xt     | Xo     |        | Xt          | Xt             | Xt                |
|     | 6   |        |        |        |             |                | <b>*</b>          |
|     | 13  | Xt     | Хо     |        |             |                | 1                 |
|     | 15  | Xt     | Xo     |        |             | Xt,o           | 1                 |
|     | 22  | Xt     | Xt,o   |        |             | Хо             | Xt,o              |
|     | 26  |        |        |        |             | Хо             |                   |
| _   | 29  | Xt     | Xt,o   |        |             | Xt             | 1                 |
| ſun | 4   | Xt,o   | Xc,o   | Хо     |             |                | 1                 |
|     | 5   |        | Хо     | Xo     |             | 1              | Хо                |
|     | 19  | Xt     | Xt,o   | Хо     | • ••        | Xt             |                   |
|     | 25  | Xt,o   | Xt,o   | Xt,o   |             | Хо             |                   |
| Jul | 17  | Xt     | Xc,o   | Хо     |             | Xt             |                   |
|     | 23  | Xt     | Xc,o   | Хо     | Xt          | Хо             |                   |
|     | 29  | Xt     | Xc,t,o |        |             |                |                   |
| ug  | 2   | Xt     | Хо     |        |             | Xt,o           | Xt                |
|     | 18  |        | Xc,o   | Xt,o   |             | Хо             | Xt,o              |
|     | 28  | Xt     | Хо     |        |             |                |                   |
| ep  | 10  | Xt     | Хо     |        |             |                |                   |
|     | 25  | Xt,o   | Xc,o   |        | Xt          |                | Xt                |
| Oct | 9   | Xt     | Хо     | Xt,o   | •           | Xt             | Xt,o              |
|     | 13  |        | Xc,o   |        |             |                |                   |
|     | 15  |        | Xo     |        |             |                |                   |
|     | 25  |        | Хо     | Хо     |             | Xt,o           |                   |
| lov | 11  | Xt     | Xt,o   | Хо     | · · · · · · |                | Xo                |
|     | 20  | Xt     | Xt,o   | Xc,o   |             | Xt             | Xt,o              |
| )ec | 8   | Xc,t,o | Xc,t,o | Xc,t,o | Xt,o        | Xt,o           | Хо                |

# Table 35. Petroleum Residues at Inner Cabrillo Beach

193

and the second se a for the second state of 
# Species of Plants and Animals at Inner Cabrillo Beach Tidal range Chlorophycophyta: green algae L Μ Η

Enteromorpha sp. Ulva sp. L-H Phaeophycophyta: brown algae Desmarestia sp.  ${\bf L}$ Egregia menziesii  $\mathbf{L}$ Sargassum вр. L Taonia lennebackeriae  $\mathbf{L}$ Rhodophycophyta: red algae Gigartina leptorhynchos L-M <u>Gigartina</u> spinosa L-M Iridaea sp. Neoargardhiella baileyi  $\mathbf{L}$  $\mathbf{L}$ Porphyra sp. Rhodoglossum affine M-H М Microalgae (unidentified) L-M ANIMALS Porifera: sponges <u>Haliclona</u> <u>ecbasis</u> Hymaniacidon sinapium L L Coelenterata Class Hydrozoa: hydroids Hydroidea, unidentified Obelia sp. L R Tubularia crocea Ŀ R L R

Key:

PLANTS

Bryopsis sp.

Chaetomorpha sp.

L: low tide M: mid-tide H: high tide R: rocks or other

194

# Table 36

Substrate

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

,

| Class Anthozoa: sea anemones                            |              |        |
|---------------------------------------------------------|--------------|--------|
| <u>Anthopleura elegantissima</u><br>Pachycerianthus sp. | M<br>L       | R<br>S |
| Platyhelminthes: flatworms                              |              |        |
| Unidentified species                                    | L            | R      |
| Annelida: segmented worms                               |              |        |
| Cirratulidae                                            | L            | s      |
| Capitellidae                                            | $\mathbf{L}$ | S      |
| Diopatra ornata                                         | $\mathbf{L}$ | S      |
| Eupomatus gracilis                                      | $\mathbf{L}$ | R      |
| Halosydna tuberculifer                                  | L            | R      |
| Lumbrineris sp.                                         | L            | S      |
| Nepthys ferruginea                                      | ${\tt L}$    | S      |
| Nereis latescens                                        | L            | S      |
| Pectinaria californiensis                               | L            | S      |
| Phragmatopoma californica                               | М            | R      |
| Platunereis bicanaliculata                              | L            | S      |
| Spiochaetopterus costarum                               | L            | S      |
|                                                         |              |        |

# Mollusca: shelled animals

# Class Gastropoda

| Acanthina spirata: unicorn snail                | L-M          | R   |
|-------------------------------------------------|--------------|-----|
| Amphissa sp.: dove shell                        | L            | R   |
| Aplysia californica: sea hare                   | $\mathbf{L}$ | R   |
| Collisella digitalis: finger limpet             | H            | R   |
| Collisella limatula: file limpet                | М            | R   |
| Collisella scabra: rough limpet                 | Н            | R   |
| Crepidula onyx: brown slipper shell             | L            | R   |
| Crepidula perforans?: flat slipper shell        | $\mathbf{L}$ | R   |
| Crepipatella lingulata: half slipper shell      | $\mathbf{L}$ | R   |
| Dialula sandiegensis: nudibranch                | L            | R   |
| Haminoea virescens: green paper bubble shell    | Ľ            | R,S |
| Hermissenda crassicornis: opalescent nudibranch | L            | R   |
| Littorina planaxis: flat periwinkle             | H            | R   |
| Littorina scutulata: checkered periwinkle       | н            | R   |
| <i>Mitrella</i> carinata: keeled dove shell     | L            | R   |
| Nassarius fossatus: basket whelk                | L            | S   |
| Ocenebra poulsoni: dwarf triton                 | $\mathbf{L}$ | R   |
| Olivella biplicata: olive shell                 | $\mathbf{L}$ | S   |
| Polycera atra: nudibranch                       | $\mathbf{L}$ | R   |
| Serpulorbis squamigerus: tube snail             | $\mathbf{L}$ | Ŕ   |
| Tegula funebralis: black turban snail           | H            | R   |
| Tegula gallina: checkered turban snail          | H            | R   |
| Triopha grandis: nudibranch                     | L            | R   |

Class Amphineura: chitons

| Cyanoplax hartwegii    | М   | R |
|------------------------|-----|---|
| <u>Mopalia muscosa</u> | L≁M | R |

## Class Pelecypoda

Amiantis callosa: white clam S  $\mathbf{L}$ Chama pellucida: jewel box shell R L Clinocardium nuttalli: Nuttall's cockle S  $\mathbf{L}$ Hiatella arctica: nestling clam R  $\mathbf{L}$ Hinnites multirugosus: rock scallop L R Macoma secta: white sand macoma Mytilus edulis: bay mussel S  $\mathbf{L}$ L-M R <u>Protothaca</u> <u>staminea</u>: rock cockle <u>Tellina</u> <u>idae</u>: Ida's tellin  $\mathbf{L}$ R,S  $\mathbf{L}$ S Tivela stultorum: Pismo clam S  $\mathbf{L}$ Tresus nuttalli: gaper clam L S Zirfaca pilsbryi: rough piddock  $\mathbf{L}$ clay

Arthropoda: joint-legged animals

## Class Crustacea

| <u>Balanus glandula</u> : acorn barnacle | Н                     | R      |
|------------------------------------------|-----------------------|--------|
| Balanus pacificus: barnacle              | L                     | R      |
| Balanus tintinnabulum: striped barnacle  | τ.                    | R      |
| Betaeus longidactylus: visored shrimp    | т.                    | Þ      |
| Cancer antennarius; rock crab            | т.                    | D      |
| Cancer anthonyi: vellow rock crab        | L                     | л<br>Ъ |
| Cancer gracilis; graceful rock grab      | T                     | л<br>С |
| Caprella californica: skeleton shrimp    | ц                     | 5      |
| Caprella laeviuscula: skeleton shrimp    | т<br>Т                | R<br>_ |
| Caprella mendax: skeleton shrimp         | <u>با</u>             | R      |
| Chthamalus fissus: buckehot barrel       | L<br>                 | R      |
| Cumacea                                  | Н                     | R      |
| Exceptaeroma incrnata, icono             | L                     | S      |
| Cirolana harfordi, izanad                | L                     | R      |
| Gammaridea: beach hopports               | M                     | R      |
| Harpacticoida                            | L-M                   | R,S    |
| Hemiaranaua anagonanaia                  | L-M                   | ร่     |
| Heptacarnus pictus bay shore crab        | L-M                   | R      |
| Teocheles vilous: broken back shrimp     | L                     | R      |
| Ligia cogidontalia hermit crab           | L                     | s      |
| Loronhunchus man di                      | H                     | R      |
| Pachuahalaa milia sheep crab             | L                     | D      |
| Pachuanana Fuars: porcelain crab         | —<br>т.               | n<br>D |
| Recurrence crassipes: striped shore crab | M_U                   | л<br>ъ |
| Pagurus granosimanus: hermit crab        | T                     | R      |
| ragurus hirsutiusculus: hermit crab      | т<br>т                | R      |
| ragurus samuelis: hermit crab            | 11<br>T 14            | R      |
| retrolisthes cabrilloi; porcelain crah   | 11 <sup></sup> M<br>T | R      |
|                                          | L−M                   | R      |

| <b>其实性,如此是不是不是不是这些法律性性的。因此也是我们就是是这些法律的是是我们的是我们的是我们的是不是不是不是的。</b> |  |
|------------------------------------------------------------------|--|
| #####################################                            |  |
|                                                                  |  |

# Class Crustacea

| <u>Portunus xantusii</u> : swimming crab<br><u>Pugettia producta</u> : kelp crab<br><u>Tetraclita squamosa</u> : red barnacle                                                   | L<br>L<br>M             | S<br>R<br>R           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------|
| Class Insecta                                                                                                                                                                   |                         |                       |
| Diptera: flies<br>Hymenoptera: ants                                                                                                                                             | H<br>H                  | R,S<br>R              |
| Class Pycnogonida: sea spiders                                                                                                                                                  |                         |                       |
| Ammothea hilgendorfi                                                                                                                                                            | L-M                     | R                     |
| Phylum Entoprocta: nodding moss animals                                                                                                                                         |                         |                       |
| Barentsia sp.                                                                                                                                                                   | L                       | R                     |
| Phylum Bryozoa: moss animals                                                                                                                                                    |                         |                       |
| <u>Bowerbankia gracilis</u><br><u>Bugula californica</u><br><u>Bugula neritina</u><br><u>Celleporaria brunnea</u><br><u>Cryptosula pallasiana</u><br><u>Watersipora arcuata</u> | L<br>L<br>L<br>L<br>L-M | R<br>R<br>R<br>R<br>R |
| Echinodermata: spiny-skinned animals                                                                                                                                            |                         |                       |
| Class Asteroidea: starfish                                                                                                                                                      |                         |                       |
| Pisaster ochraceus: ochre starfish                                                                                                                                              | L                       | R                     |
| Class Echinoidea: sea urchins                                                                                                                                                   |                         |                       |
| Strongylocentrotus franciscanus: long-spined red                                                                                                                                | L                       | R                     |
| <u>Strongylocentrotus</u> <u>purpuratus</u> : purple sea urchin                                                                                                                 | L                       | R                     |
| Class Holothuroidea: sea cucumbers                                                                                                                                              |                         |                       |
| Parastichopus parvimensis                                                                                                                                                       | L                       | S                     |
| Chordata                                                                                                                                                                        |                         |                       |
| Class Ascidacea: tunicates                                                                                                                                                      |                         |                       |
| <u>Botrylloides</u> sp.<br><u>Ciona intestinalis</u><br>Styela plicata                                                                                                          | L<br>L<br>L             | R<br>R<br>R           |

Class Pisces: fishes

| Atherinidae: top smelt            | $\mathbf{L}$ |
|-----------------------------------|--------------|
| Clinocottus analis: wooly sculpin | $\mathbf{L}$ |
| Cottidae: sculpins                | $\mathbf{L}$ |
| Embiotocidae: surfperches         | $\mathbf{L}$ |
| Leuresthes tenuis: grunion        | Н            |

## Class Aves: birds

Actitis macularia: spotted sandpiper Aechmophorus occidentalis: western grebe Arenaria inerpres: ruddy turnstone Catoptrophorus semipalmatus: willet Corvus brachyrhynchos: common crow Crocethia alba: sanderling Gavia immer: common loon <u>Hirundo rustica</u>: barn swallow Hydroprogne caspia: Caspian tern Larus delawarensis: ring-billed gull Larus heermanni: Heermann's gull Larus philadelphia:Bonaparte's gull Limosa fedoa: marbled godwit Megaceryle alcyon: belted kingfisher Numenius americanus: long-billed curlew Pelecanus occidentalis: brown pelican Podiceps caspicus: eared grebe Squatarola equatarola: black-bellied plover Stercorarius parasiticus: parasitic jaeger Sterna albifrons: least tern Sterna forsteri: Forster's tern

Class Mammalia: mammals

<u>Felis</u> <u>domestica</u>: cat <u>Rattus</u> sp.: rat

ALL DESIGN

Table 37. Intertidal Organisms at Inner Cabrillo Beach, 1977.

| ORGANISM                  | Jan | Ma  | 40 | <b>_</b> | oril     | _        |          |            | Mav       |            |               |                  |                      | Innt          |          | -              |                  | 1            | -            |              | 1            |          |          |   |   |     |            |     |    | Γ        |
|---------------------------|-----|-----|----|----------|----------|----------|----------|------------|-----------|------------|---------------|------------------|----------------------|---------------|----------|----------------|------------------|--------------|--------------|--------------|--------------|----------|----------|---|---|-----|------------|-----|----|----------|
|                           | ង   | ە   | 13 | 14       | 7        | -        | 9        | 13         | 2         | 22         | 26            | 29               | Ē                    | 5             | 19 2     | <mark>۲</mark> | 2                | i<br>M       | 1            |              | 1 28         | 19       | ľ        | ŀ |   |     | *          |     |    | й<br>Хіо |
| PLANTS                    |     |     |    |          |          |          |          |            | Ì         | t          | $\uparrow$    | +                | ╞                    | $\vdash$      | +        | +              | $\left  \right $ | <b> </b> .   | +            | ╞            |              | <br>     |          | • | ; | 1   |            |     |    | .        |
| CHLOROPHYCOPHYTA          |     |     |    |          | <u> </u> |          |          |            | 1         | t          | ┿             | -                | -                    |               | -        | +              | +                | +            |              |              | 1            |          |          |   |   |     | 1          | ╈   | ╈  |          |
| Bryopaia ap.              |     |     |    |          | <b> </b> | <u> </u> |          |            | 1         |            | +             | +                | +                    | +             |          | ╉              | +                | -            | ┨_           |              |              | -        | <u> </u> |   |   |     | +          | -   | +- | 1        |
| Chaetomorpha sp.          |     |     |    |          |          | <br>     |          |            |           |            | 1             |                  | +                    | +             | -        | +              | +                | +            | +            | -            | +            | +        | +        | + | + |     | +          | +   | -  |          |
| Enteromorpha sp.          |     |     |    |          | +        | +        |          | +          | +         | +          |               | +                | +                    | ŀ             | +<br> _  | +              | +                | +            | +            | +            | +            | +        | +        |   |   |     | - <b>†</b> | ╉   |    |          |
| Ulva sp.                  |     | +   |    | +        | +        | +        | +        | +          | +         | +          | +             | †<br>  +         |                      | $\frac{1}{1}$ | +        | +              | +                | +            | +            | +            | +            | +        | +        | + | + | •   | +          |     |    |          |
| PHA BOPHY COPHY TA        |     |     |    |          | <b> </b> | <u> </u> |          |            | ļ         | 1          | + -           |                  | +                    | ╉             | ╞        | +-             | +                |              | +            | _            | 1            |          |          |   |   | ·   | -          | -   | +  |          |
| Desmarestia sp.           |     |     |    | +        |          | +        |          |            | -         | <b>†</b>   | ┢             |                  | ╞                    | +-            | ╀        | ┦─             | ╞                | +            | +-           | +            | _            | 1        | 1        |   |   |     | ╈          | +   | +- | Ī        |
| Egregia mensissit         |     |     |    |          |          |          |          |            |           | ┢          | +             | $\uparrow$       | $\left  \right _{+}$ | +             | ++       | ┨              | -                |              | -            |              | ╡            | +        |          |   |   | 1   | +          | +   | +- | 1        |
| Sargassim ap.             |     |     |    |          |          |          |          |            | -         | <b>-</b>   | $\vdash$      | -                | ╞╴                   | -             | +        | +              | -                |              | <b>_</b>     | <u> </u>     | -            | <b> </b> |          |   | Ι |     | 1          | ┢   | ╋  | 1        |
| Taonia lemebackeniae      |     | +   |    |          |          |          |          |            | 1         |            | ╋╾            | +                | ╞                    | ┢             | +        | +-             | ╉                |              | $\downarrow$ |              | 1            |          |          |   |   | +   | +-         | +-  | +  | T        |
| AHODOPHY COPHY TA         |     | L   |    |          |          |          |          |            | t         |            | +             | $\left  \right $ | ╎                    | +             | ╞        | ┽╌             | ╞                | $\downarrow$ | -            |              | _            | <b>_</b> |          |   |   |     | +          |     | ╈  | 1        |
| Gigartina ∎pp.            |     | +   |    |          |          | +        |          |            | +         | 1-         | $\uparrow$    | ·                | <u> </u> ∓           |               | <u> </u> | +              | +                | +            | +            | +            | $\downarrow$ | [+       | +        | + | + | +   | 1.         | +   | +  | <u> </u> |
| Iridaea =p.               |     |     |    |          |          |          |          | T          | t-        | t          | $\uparrow$    | +                | +                    | ╞╴            |          | ┢              | -                | _            |              | -            | 1            |          |          |   |   |     |            |     |    | 1        |
| Neoagardhiella baileyi    |     | +   |    |          | +        | +        |          |            | 1         | +          | +             | +                |                      | ╡             | 1        | +              | +                | +            | ╀            | +            | +            |          | +        | + | + | +   | +          | -+- | +  | Ι.       |
| Porphyra sp.              |     |     |    | +        |          | +        |          |            | +         | <b> </b> - | $\frac{1}{1}$ | +                | ╞                    | ┢             | +        | +              | +                | +            |              |              | -            | +        |          |   |   |     | +-         | +   | +  | 1        |
| Rhodoglossum affine       |     |     |    |          |          |          |          | 1          | 1-        | $\uparrow$ | <u> </u>      | Ť                |                      | ╋             | +-       | -              | +                | +            | <u> </u>     | +            |              | +        | Ŧ        | + | + | ϯ   | +          | ┿   |    | 1        |
| Microalgae (unident.)     |     |     |    |          |          |          |          |            | -         |            | -             | -                | -                    | +             | +        | +              | +                | +            | -            | <u> </u>     | <u> </u>     |          | +        |   | 1 |     |            | ┼   | ╞  | 1        |
| STRATS                    |     |     |    |          |          |          |          |            | 1         |            | ┝             | ┢─               | ┨                    | ┝             | ┢╌       | ╞              | <u> </u>         | _            | 1            | <b> </b>     |              |          |          |   | Γ | 1-  | ┢          | ╉   | ╀  | Т        |
| PORIFERA                  |     |     |    |          |          |          | <b>†</b> | t          | ╀╺        | +          | +             | ╞                | ┢                    | ╀             | ╈        | ╞              |                  | $\downarrow$ | ╞            | ┨            |              |          | T        |   | T |     | ╉          | +   | +  | Т        |
| Haliclona ecbasis         |     |     |    |          |          |          | †-       | 1          | $\dagger$ | ╀          | +-            | +-               | ┼-                   | +-            | +        | +-             | +                | +            | $\downarrow$ | $\downarrow$ |              |          |          |   |   | -+- | t          | ┥   | -+ | T        |
| Hymeniacidon sinapium     |     |     |    |          |          |          | T        |            | ╞         | ╉          | ╀             | ╀                | ╀                    | ╀             | +        | +              | +                | -            | _            |              |              |          |          |   | • | +   | +          | +   | +  | T        |
| COELENTERATA              |     | Ι   |    |          |          |          | ļ        | t          | ┫         | ┿╌         | ┼             | ╀                | ╀                    | ╀             | ╀        | ╀              | ╞                | +            | ╞            | $\downarrow$ | ſ            |          |          |   |   |     | ╺╴╋        | ┥   | ╉  | 1        |
| Hydroides (unident.)      |     |     |    |          |          |          | t        | †          | +-        | ╀          | +             | ╀                | ╀                    | +             | ╆        | +-             | +                | _            | +            |              | $\square$    |          |          | Ť | ↑ | -+  | +          | ┥   |    | -        |
| Obstia mp.                |     | [ _ |    |          |          |          | Ť        | ϯ          | ╞         | ┢          | ╉             | +                | ┿                    | +-            | ╀        | 4              | -                | +            | _            | 4            | T            |          |          | Ť | ┇ | +   | +          | 1   |    | Т        |
| Tubularía crocea          |     |     | +  |          |          |          | t        | t          | ┥         | ╉          | +             | ╋                | ╀                    | ++            | +        | ļ              | +                | 1            | +            |              | ŀ            |          | 1        |   | 1 | ╡   | ┿          | ╉   | -  | T        |
| Anthoplewra elegantissima |     |     |    | +        | +        | +        | +-       | 1          | +         |            |               |                  | ╀                    | +             | •        | •   •          | ŀ                | -<br>-       |              | $\downarrow$ | +            |          | +        |   | 1 | ╡   | +          | -   |    | -1       |
| Pachycerianthus ap.       | † - | ļ   |    |          |          |          | Ţ        | $\uparrow$ | ╀         | +          | -             | -                |                      | ۲ <u> </u>    | ┞        | ⁺╄             | •                | •            | +            |              | +            | +        | +        | + | ↑ | +   | +          |     |    | Ţ        |
| PLATYHELM INTHES          | Í   | T   | T  | T        |          | 1        | ╈        | ╉          | ╉         | ╉          | +             | +                | +                    | +             |          | $\downarrow$   | _                | _            | $\downarrow$ | $\square$    |              |          | 1        |   | 7 | ┥   |            | -   |    |          |
|                           | ]   | 1   | 1  | 1        | 1        | 1        | _        | ٦          | _         | _          |               |                  |                      |               |          | _              |                  |              |              |              |              | _        | -        | - | 4 |     | -          |     | -  | -        |

「外にするない」でいた。そのでは、別のでは、「「から」では、「「ない」」では、「ない」」では、「ない」」では、「ない」」では、「ない」」では、「ない」」では、「ない」」では、「ない」」では、「ない」」で

| continued) |
|------------|
| Ť          |
| 37         |
| ble        |
| Ē          |

| ORGANISM                   | Jan<br>Jan | tar.       | <br>    | APE      |          |   |          |        |    |          |                  |          | Jun              |            |          | ?                | λŢ       |           |                       |          | Sept     |          | 8        | tobei      | -<br>-       | No       |          | C a      |
|----------------------------|------------|------------|---------|----------|----------|---|----------|--------|----|----------|------------------|----------|------------------|------------|----------|------------------|----------|-----------|-----------------------|----------|----------|----------|----------|------------|--------------|----------|----------|----------|
| ANNELIDA                   | -          | 7          |         | -<br>t   | -        |   | 4        | 4      | 77 | £        | 8                | ╺        | -<br>-           | <u>-</u>   | -        |                  | 3 26     | ~         | 18                    | 28       | 2        |          |          | -1         | <u>%</u>     | <u>_</u> | 2        | -        |
| Polychae ta                |            | †-         | +       | ┢        | +        | ╀ | $\vdash$ | $\bot$ |    |          | +                | +-       | ┿                | +          | +        | +                | +        |           | +                     | +        |          | -        | +        | +          | $\downarrow$ | <b>_</b> | <u> </u> |          |
| Cirratulidae               |            |            | -       | ╞        | +        | - | <u> </u> | ļ      |    |          | <b>†</b>         | ++       | +                | ╞          | ┝        | -                |          |           | $\left  \right $      | +        | -        | .        |          | +          | -            | +        |          | +        |
| Capitellidae               |            |            |         |          |          | - |          |        |    |          |                  |          |                  |            | -        |                  |          |           |                       |          | -        | -        | -        | +          | -            | 1        |          |          |
| Diopatra ornata            |            |            |         | Í        | +        |   | L        |        | [  |          | <u> </u>         | +        | -                | <u> </u> _ | ╞╴       | -                |          |           | <b> </b>              | -        | +        | -        | +        |            |              | +        | <u> </u> | +        |
| Rupomatus gravilis         |            |            | <br>    |          | -        |   |          | +      |    |          | <u> </u>         | +        | +                | +          | +        | -                |          | +         | +                     |          | +        | +        | +        | +          | +            | +        | +        | +        |
| Halosydna tuberculifer     |            | <br>       |         | <b> </b> | -        |   |          | Ļ      |    | +        |                  | <u>-</u> | +                | +          | <br>  .  |                  |          |           | +                     |          | -        |          |          | +          | +            | +        | +        |          |
| Lumbrinerie sp.            |            | -          |         |          |          | - |          |        |    |          |                  |          |                  | -          |          | -                |          |           |                       | $\vdash$ |          | $\vdash$ | <u> </u> | -          | <u> </u>     | +        |          |          |
| Nephtys ferruginea         |            |            |         | $\vdash$ | <u> </u> |   | L        |        |    |          | <b>†</b>         |          | $\vdash$         | ╞          | _─       | ╞┈               |          |           |                       |          | -        | +-       | ┝        | +          | <b> </b>     | +        |          | +        |
| Nereis Latescens           |            |            |         |          |          |   |          |        |    | <b>†</b> |                  |          |                  | <br>       | <u> </u> |                  |          |           |                       | +        |          | -        | -        | +          | <br>         |          |          |          |
| Pectinaria californiensis  |            |            |         |          |          |   | ĺ        |        |    |          | <b> </b> -       | ŀ        |                  | <u> </u>   |          |                  |          |           |                       |          | •••      | -        | -        | -          | <br>         | +        |          |          |
| Phragmatopoma californica  |            | -          |         |          |          |   |          | +      |    | <u> </u> | +                |          |                  |            | +        |                  |          |           | +                     |          | +        | ++       | +        | <br>       |              | +        |          |          |
| Platynereis bicanaliculata |            |            |         |          |          |   |          |        |    | <u> </u> | -                |          | $\vdash$         |            |          |                  |          | <b>†</b>  | $\left  \right $      |          | -        |          | Ļ        |            |              | +        |          |          |
| Spiochaetopterus costarum  |            | <b> </b> - | -       |          | <u> </u> |   |          |        |    | <u> </u> | <u>├</u> ──-     |          | ┝─╸              |            | ┣        | <u> </u>         | -        | <u> </u>  |                       |          |          | <u> </u> |          |            |              | +        |          | ſ        |
| MOLLUSCA                   |            |            | <b></b> |          |          | ļ |          |        |    | †        |                  |          |                  |            | ┨        |                  |          | 1         | ┥—                    |          | ╞        |          | +        |            | _            |          |          | ]        |
| Gas tropoda                |            |            |         |          | ļ        | - |          |        | T  | <b>+</b> | +                | +.       | ┢                | ╞          | $\vdash$ | <u> </u>         | 1        | 1         | +                     | ┢        | +        | +        | +-       | +          |              |          |          | T        |
| Acanthina spirata          |            |            | +       |          |          |   |          |        |    | <b>†</b> | +                |          |                  | +          | ┼        | +                |          | +         | <del>-</del>          | <u> </u> | +        | +        | +        | +          | +            | +        | +        | +        |
| Amphiesa sp.               |            | -          |         |          |          |   |          |        |    |          |                  |          |                  | -          | <u> </u> |                  |          |           |                       | ╞        | +        |          | _        | +          | -            |          |          | ]        |
| Aplysia californica        |            | +          | +       |          | +        |   | ÷        | +      | +  |          |                  | +        | +                | <br>       | -        | <u> </u>         | •<br>•   | t         | -                     | +        | -        | -        | -        |            |              |          |          | I        |
| Collisella digitalis       |            | -          | +       | +        |          |   | +        | +      | +  |          | +                | $\vdash$ | $\left  \right $ | +          | +        | +                | +        | +         | +                     | +        | +        | +        | +        |            | +            | +        | +        | +        |
| Colligella limatula        |            |            | +       |          |          |   |          |        |    |          | +                | -        |                  |            | +        | +                | +        | +         | <b> </b> <sup>+</sup> | +        | +        | +        |          |            | +            |          | +        | +        |
| Collisella scabra          |            | -+         | -       |          | _        |   |          |        |    |          |                  |          |                  |            |          | -                |          | +         | ; +<br>+<br>:         | +        | -        | _        | -        |            | +            |          | +        | 1        |
| Crepidula oryz             |            | +          |         | _        |          |   |          | -      |    |          | r                | +        | +                |            |          |                  |          | <b>†</b>  | <br>                  | -        | -        |          | +        | +          | +            | +        | Γ        | +        |
| Crepidula perforans        |            |            | -       |          |          |   |          | ļ      |    |          |                  | <u> </u> | ┼╌               | -          |          | -                |          | $\dagger$ | +                     |          | +        |          |          |            |              | +        | -        | 1        |
| Crepipatella lingulata     |            |            | -       |          |          |   |          |        |    | -        |                  | +        |                  |            | -        | -                |          |           | -                     | -        | +        | <b> </b> |          | +          |              | +        | -        |          |
| Dialula sandiegensis       |            |            |         |          |          |   |          |        | ╞  | -        | ┝                |          |                  |            |          | ļ                | ļ        | +         | -                     | +-       | ╞        | -        | 1-       | -          |              |          | T        | <b>T</b> |
| Haminoed virescens         | _          |            | _       | !        |          |   |          |        |    | <b> </b> | ┢╌               |          | +                |            | ļ        | <br><del> </del> | <b>+</b> | ↓<br>     | +                     |          | +        | -        | 1        |            |              |          | 1        | Τ        |
| Hermisserda craesicornis   |            | +          |         |          | -        |   |          |        |    | -        |                  | -        |                  |            | -        | .                |          | <u> </u>  | -                     | ┢        | -        | +        | +        |            | -            |          |          | Τ        |
| Littorina planarie         |            |            |         |          |          |   |          |        | +  |          | $\left  \right $ | -        | <b> </b>         | -          | +        |                  |          | †-        |                       | +        | 1        | +        | -        | <u> </u> . |              | +        | 1-       | +        |
| Littorina scutulata        | -+         | -          | +       | +        |          |   | +        |        | +  |          |                  |          |                  | +          | +        | +                | +        | +         | -                     | +        | +        |          |          | ļ          | +            |          | 1        | +        |
| ntrella carrata            |            |            |         |          |          |   |          |        |    | _        | —                |          | +                |            |          |                  |          |           |                       |          | $\vdash$ | ļ        | +        | +          |              | +        | T        | +        |

| $\sim$       |
|--------------|
| d.           |
| Ū.           |
|              |
| Ę            |
| ::::         |
| :            |
| 2            |
| ŏ            |
| J.           |
| 5            |
| $\mathbf{c}$ |
|              |
| Щ.           |
| 7            |
| 7            |
| Ē.           |
| -            |

| ORGANISM                | Jan          | Mar           |             | APLI     |            | ļ,       |            | ×,       |              |              |        |   |    | إي        |    | 5  | 7            |              | Augu         | st  | - <del>3</del> | ept.      |              | et<br>L      | ober  |     | Nov |     | a d    |
|-------------------------|--------------|---------------|-------------|----------|------------|----------|------------|----------|--------------|--------------|--------|---|----|-----------|----|----|--------------|--------------|--------------|-----|----------------|-----------|--------------|--------------|-------|-----|-----|-----|--------|
| MOLLUSCA (Continued)    | 2            | 2             |             |          | _          |          | -          |          | \$           | •            | 67     | • | 'n | <u>n</u>  | 2  | 2  |              | -<br>σ       |              | 58  | 9              | 52        | 6            | 7            | 5     | 25  | Ħ   | 2   | 8      |
|                         |              | ╉             | +           | +        | +          | -+       | -          |          | $\downarrow$ |              |        |   |    |           |    |    |              |              |              |     | -              | <b>.</b>  |              |              |       |     |     |     |        |
| Gastropoda              |              |               |             |          |            |          |            |          |              |              |        |   |    | [         |    | ╞  | -            | ┢            | -            | -   | <b> </b>       |           | +            | ╞            |       |     |     | T   |        |
| Nassarius fossatus      |              |               |             |          |            |          |            |          |              |              |        |   |    |           | 1  | +  | +            | ╉╸           | -            | +   |                |           | +-           | +            |       |     | +   |     |        |
| Ocenebra poulsoni       |              | ļ             |             |          | ┢          | ╞        | -          | <u> </u> | <b>¦</b>     | <u> </u>     | <br>   |   | +  | +         | 1  | +  | +.           | ╀            | +            | ╀   | +              | +         | -            |              | 1     |     | -   | Ť   |        |
| Olivella biplicata      |              |               |             |          | !'<br> +   | <br>  +  |            |          | ļ            | <br>         |        | + |    | +         | +  | +  |              | +            |              | +   | $\downarrow$   | +         | _ <u> </u>   | +            | -     |     |     | -+- | -      |
| Polycena atra           |              |               | <b> -</b> - | +        |            | <u> </u> | +          | -        |              | -            |        | + |    | 1         |    | ╞  | +            | +            |              | +   |                | ·         |              | •   •        | •     |     | •   |     | +      |
| Serpulorbis squamigerus |              | ╞             |             | ╞        | -          |          | -          |          | ╞            | -            |        | + | Ī  | 1         | 1  | ╀  | +            | +            | +            | +   |                | +         | $\downarrow$ |              |       | +   | -   |     |        |
| Tegula funebralis       |              | ╞             | <u> </u>    | +        | +-         | +        | -          | +        | +            | $\downarrow$ | +      |   |    |           | +  | +  | -+-          |              | +            | +   | +              | +         |              | •            |       | + - | + - | + . | + [-   |
| Tegula gallina          |              | -             | ╞           | +        | <u> </u>   | -        | $\vdash$   | -        |              | <b> </b>     | 1      |   | 1  | 1-        | ╉  | +  | +-           | +-           |              | +   | ·              |           |              | _            |       | •   |     | -†  | +      |
| Triopha grandis         |              | <b> </b>      | $\vdash$    |          | +          | <u> </u> | +-         |          | _            | 1            |        | + | 1  | 1         | +  | +  | -            | +            | +            | -   |                |           |              | _            |       |     | -+- | -   |        |
| Amphineura              |              |               | ╞           | -        | +          | 1        | -          |          | -            |              | $\bot$ |   | Ī  | +-        | +  | ╉  | +            |              | +-           |     |                | -         |              |              |       | 1-  |     | Ť   |        |
| Cyanoplax hartwegii     |              |               |             | -        |            |          | ₋          |          | -            | -            |        |   | +  |           | +  | +- | +-           | +            | +            |     | -              |           | $\downarrow$ | 1            |       |     | +   | _   | Τ      |
| Мораlia тивсова         | <del> </del> | <u> </u>      | <u> </u>    | <u> </u> |            | +        | ╞          | +        | 1            |              | Ĺ      | + | +  | +         | +  | +  | ╀            | +            | ┼            | +   | -              | -         | _            |              |       | -   | 1.  | 1   | Ţ.     |
| Pelecypoda              |              | -             | +-          | -        | $\vdash$   |          | +          | -        | ļ            | +            |        |   | 1  | $\dagger$ |    | +- | +            | +            | •            | -   | 1              | •         | 1-           | •            | •     | +   | +   | +   | +      |
| Amiantis callosa        | † ·          | -             | +           | -        | ÷.         | -        |            |          | +            |              |        | + | +  | 1         | ╞  | -  | +            | -            | +            | -   | <b>.</b>       |           |              | Ţ            | 1     |     |     |     | •      |
| Chama pellurida         | †            | <b> </b>      | +           | +        | +-         | +        |            |          |              |              |        | + | 1  | +-        | +  | ╀  | +-           |              | +            | +   | _              |           |              | $\downarrow$ |       |     | +   | +-  | + [    |
| Clinocardium nuctalli   | †            |               | $\vdash$    | +-       | -          | +-       | <u> </u> . | }        |              |              |        | + | +  |           | ╈  | +  | +            | +            | +            |     | 1              |           | _            |              |       | -+- | -+  | +   | Τ      |
| Histells arctics        | <b> </b>     |               |             |          |            | -        | <b> </b>   | ┢        | <b> </b>     | +            |        |   | +  | 1         | +  | ╀  | +-           |              | -            |     | 1_             |           |              |              |       | -+  | ╈   | +-  | Т      |
| Himites multirugosus    | -            |               |             |          | +-         |          | ┦          | -        | 1            |              |        | 1 | +  | +         |    | ╋  |              | +            | $\square$    |     | _              | $\square$ |              |              | 1     | -   |     | ╉   | T      |
| Macoma secta            |              |               | <b> </b> _  |          | <u> </u>   | <b> </b> | ┨          | Ļ        |              |              |        | + | +- | +         | +  | +- | ╀            |              | -            | +   | 1              |           |              |              | +     | -   |     | ╉   | $\top$ |
| Mytilus edulis          | -            |               | <u> </u>    | -        | <u> </u>   | <b> </b> | <b> </b>   | +        | +            | +            | +      | 1 | +  | +         | +- | +  | +            | $\downarrow$ |              | ·   |                | -         | -            |              | · † · |     |     | - - | - T    |
| Tellina idae            | <u> </u>     | -             | <u> </u>    | ┨        | _          | <b> </b> | <br>       | <u> </u> |              |              |        | + |    | ╈         | +  | +- | +            | •            | -            | •   | ١              |           | ŀ            |              | •     | + † | +   | •   | + [    |
| Tivela stultorum        |              |               |             | <b> </b> |            |          |            |          |              |              |        | + | ┥  | +         | +  | +  | -            | +            | $\downarrow$ |     |                |           |              |              | -     | +   | •   | ╈   | T      |
| Tresus nuttalli         |              |               | +           |          | +          | ļ        |            | L        |              |              | +      | + | +  | +         | +  |    |              | +            | -            | +   | +              | +         |              | 1            | ╡     | +   | +-  | -+- | 1.     |
| Zirfaea pilebryi        |              | <br>          |             |          |            | <b> </b> |            |          |              |              |        | + | ╉  | +-        | ╋  | ╀  | <u> </u>     | _            |              |     |                |           |              | •            |       | ╡   |     | •   | •      |
| Protothada stamined     |              | -             | <b> </b>    | _        | ╞          | -        | 1          |          |              |              | 1      | + | ++ | ╋         | ┢  | ╀  | +            |              |              |     | I              | -         |              | -            | -+    | ╈   | -+  | ╉   | 1      |
| ARTHROPODA              | ╞            |               | -           |          | ╆.         | -        | Ļ          |          |              | T            | T      |   | 1  |           | ┢  | ┼  | +            | $\downarrow$ | -            | · [ |                | •         |              | -            | •     | ╉   | ╡   | ┽   | ÷T     |
| Crustacea               | -            |               | ┢           | -        | L          | 1.       | <u> </u>   |          | Γ            | Ť            | 1      | 1 | +  | +         | +- |    | $\downarrow$ | 4-           | Ĺ            |     | T              |           |              | ╈            |       |     | -+  | -+  | 1      |
| Balanus glandula        | <b> </b> -   | <b> </b>      | <b>*</b>    | +<br> -  | <b> </b> + | ļ_       | +          | +        | +            | 1            | +      | + | +- | +         | +  | +  | +            | +            | +            | +   | 1              | 1+        |              |              | -+-   |     | ╪   | +   | 1.     |
| Balanue pacificue       |              |               |             | _        |            | _        |            |          |              | <b>†</b> -   | +      | + | +  | ╀         | ╉╴ | +- | +-           | <b>_</b> .   |              |     | ·              | •         | •            | +            | ╉     | •   | ┢   | ╷┤  | T      |
| Balanus tintinnabulum   |              | -             |             | <br>     | Ļ          |          |            |          | Ī            | 1+           | 1      | + | ╉  | ╋         | ╀  | ╀  | $\downarrow$ | $\downarrow$ |              |     | 1              |           | ↑            | +            | ┦     | - f | +   | ╉   | +1     |
|                         |              | $\frac{1}{1}$ | ┦           | -        |            |          |            |          |              | •            | 4      | ٦ | -  | -         |    | -  | -            |              |              |     |                |           |              |              |       |     | -   | u   |        |

ì 

Table 37 (continued)

| Observicional       Observicional<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ORGANISM         | S. | ,<br>₹ | 5          | 4        | - Tit |              | ļ        | ļ        | ž             |          |          |              |              | - S          | ł         |              | Jul.     | 2            | Ā          |   |    | 8  | ي ا | C   |            |     | ╞╴    | 5   | Ŀ        | <u> </u>     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----|--------|------------|----------|-------|--------------|----------|----------|---------------|----------|----------|--------------|--------------|--------------|-----------|--------------|----------|--------------|------------|---|----|----|-----|-----|------------|-----|-------|-----|----------|--------------|
| M. Constrance()         M. Constra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | 4  | 1      | -          | =        | =     | -            | ۍ        | 긔        | ม             | 22       | ~<br>%   | 2            | 2            | Ĩ            | 9 25      | Ξ            | 2        | 2            | ~          | 9 | 28 | 2  | 52  | 6   | 11         |     | 1     |     | 4        | T            |
| Constraint         Constra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DA (Continued)   |    |        |            |          |       |              |          |          | <b>-</b>      | <u> </u> |          | <b> </b>     |              | $\vdash$     |           | ╞            | ┞        |              | <u> </u>   |   |    |    |     |     |            | +   |       |     | ┦        | +            |
| 1. Considency Lue       1. Considency       1. Considency Lue       1. Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                |    |        |            |          |       |              |          | <b>†</b> | <b>†</b>      | ┢        | -        | +            | ┝            | -            | _         |              | ╞        | $\downarrow$ | +-         |   | Ι  | Γ  |     |     | ╋          | ╈   | +     | ╀   | +        |              |
| Outlowardian       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       + <t< td=""><td>s longidactylus</td><td></td><td></td><td></td><td></td><td></td><td></td><td><b>†</b></td><td><u>†</u></td><td>┢</td><td>┢</td><td>+</td><td>┝</td><td>╉</td><td>╀</td><td></td><td>+</td><td>╞</td><td><b> </b></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td>+</td><td>╉</td><td>+</td><td>-+-</td><td></td><td>- <b>r</b>-</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s longidactylus  |    |        |            |          |       |              | <b>†</b> | <u>†</u> | ┢             | ┢        | +        | ┝            | ╉            | ╀            |           | +            | ╞        | <b> </b>     | 1          |   |    |    |     |     | +          | ╉   | +     | -+- |          | - <b>r</b> - |
| articlowii       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | an termami us    | +  |        |            |          |       |              | 1        | ┢        | +             | +        | +        | ╀            | -            | ╀            | ╞         | +            | ╀        | +            | 1          | ſ | Γ  | •  |     | ╋   | +          | ╡   | +     | ╡   | _        |              |
| protition         protition <t< td=""><td>anthonyi</td><td>+</td><td>+</td><td></td><td></td><td>+</td><td></td><td>T</td><td>†-</td><td>┢</td><td>╀</td><td>┢</td><td>ŀ</td><td>╞</td><td></td><td>-</td><td>∔*</td><td>+-</td><td>4</td><td>+</td><td></td><td></td><td>Ī</td><td>ŀ</td><td></td><td>-fi</td><td></td><td>+</td><td></td><td>-</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                  | anthonyi         | +  | +      |            |          | +     |              | T        | †-       | ┢             | ╀        | ┢        | ŀ            | ╞            |              | -         | ∔*           | +-       | 4            | +          |   |    | Ī  | ŀ   |     | -fi        |     | +     |     | -        |              |
| a cit/formical       a cit/formical       a cit/formical       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b <td>gracilis</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><b>†</b></td> <td>╋─</td> <td>+</td> <td>╞</td> <td>+</td> <td>╀</td> <td>+</td> <td></td> <td></td> <td>4.</td> <td>-</td> <td>+-</td> <td><u> </u>.</td> <td>Ţ</td> <td></td> <td>·</td> <td>·</td> <td>•</td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td>. –</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | gracilis         |    |        |            |          |       |              | <b>†</b> | ╋─       | +             | ╞        | +        | ╀            | +            |              |           | 4.           | -        | +-           | <u> </u> . | Ţ |    | ·  | ·   | •   |            |     |       | *   |          | . –          |
| a derivacuta       Image: Section of the sectin of the secting of the section of the section of the s | a californica    |    |        |            | [        |       |              | 1        | <u>†</u> | +             | ╉        | +        | +-           | +            | +            | +         | <b>_</b>     | <b> </b> | _            | -          | Ţ |    | Γ  |     | +-  | +          | ╉   |       | ∔   |          | -r           |
| Pendeta:         Image: File aug         Image: File aug </td <td>a laeviuscula</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Ī</td> <td>†-</td> <td>╞╌╸</td> <td>+</td> <td>┢─</td> <td>╀</td> <td>-</td> <td><math>\vdash</math></td> <td></td> <td></td> <td>-</td> <td></td> <td>4</td> <td></td> <td></td> <td>Γ</td> <td>Γ</td> <td></td> <td>1</td> <td></td> <td>╉</td> <td>╉</td> <td>+</td> <td>-</td> <td>-1-</td>                                                                                                                                                                     | a laeviuscula    |    |        |            |          |       | Ī            | †-       | ╞╌╸      | +             | ┢─       | ╀        | -            | $\vdash$     |              |           | -            |          | 4            |            |   | Γ  | Γ  |     | 1   |            | ╉   | ╉     | +   | -        | -1-          |
| Lue freeue       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | а тендат         |    |        |            | Ī        |       | 1            | +        | +-       | +             | +        | ┝        | ┥            |              | ╞            | _         | $\downarrow$ | 4        | _            | -          | T | Ι  |    |     |     | ϯ          | -   | ╋     | +   | +-       |              |
| 2 bar/ordi:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tue fieeus       |    |        | Ľ          | +        |       | +            | +-       |          | <u>†</u>      | +-       | +        | _            | +-           | +            | +         | +            | +        | +            | +          | F | +  | ]ŧ | +   | +   |            | -   | +     |     |          | Τ.           |
| And       Fromt intermute       Image: Second secon          | a harfordi       | -  |        |            | 1        | Γ     | †-           | †        | ┝╸       | ╞             | +        | ┢        | ╉            |              | +            | ╞         | 4            | ┫        | +            | -          |   |    |    | +   |     | +          | +   | .+    | -   |          | T            |
| arona ivolanda       Image: Second ivolated       Image: Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |    |        | F          | -        | ţ.    | ╞            | †-       | ╀        | +-            | ╉─       | ╉        | ╂            | +            | -            | +         | 1            | ╞        | <u> </u> .   |            |   |    | Ţ  |     | 1   | ╀          | ╉   | +     | +   | -+-      | 1            |
| Mathematical       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       + <t< td=""><td>eroma inormata</td><td>F</td><td></td><td>F</td><td>t</td><td>t</td><td><math>\mathbf{f}</math></td><td>†-</td><td>+-</td><td>┢</td><td>┿╸</td><td>╉─</td><td>+</td><td>+-</td><td>1</td><td>-</td><td><b>.</b></td><td>+-</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td>┢</td><td>+</td><td>╉</td><td>-+-</td><td>+</td><td>+</td><td>T</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | eroma inormata   | F  |        | F          | t        | t     | $\mathbf{f}$ | †-       | +-       | ┢             | ┿╸       | ╉─       | +            | +-           | 1            | -         | <b>.</b>     | +-       | 1            |            |   |    |    |     | ┢   | +          | ╉   | -+-   | +   | +        | T            |
| codda       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       + <td>, ra</td> <td>†-</td> <td></td> <td><math>\uparrow</math></td> <td><b>†</b></td> <td>1</td> <td><u>†</u></td> <td>┢</td> <td></td> <td>+-</td> <td>+</td> <td>╞</td> <td>++</td> <td></td> <td>+</td> <td>+</td> <td>+</td> <td>-</td> <td></td> <td><b> </b>*</td> <td>T</td> <td></td> <td></td> <td>+</td> <td>+</td> <td>+</td> <td></td> <td>+</td> <td>+</td> <td>+</td> <td>Ť</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | , ra             | †- |        | $\uparrow$ | <b>†</b> | 1     | <u>†</u>     | ┢        |          | +-            | +        | ╞        | ++           |              | +            | +         | +            | -        |              | <b> </b> * | T |    |    | +   | +   | +          |     | +     | +   | +        | Ť            |
| Returns tell       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       + <t< td=""><td>coida</td><td>ſ</td><td>1</td><td>t</td><td>t</td><td>┢</td><td><math>\uparrow</math></td><td>╞</td><td>+</td><td>┼-</td><td>Ļ</td><td>┼</td><td>+</td><td>+-</td><td>╀</td><td>╡</td><td>∔</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td>Ţ</td><td>┦</td><td>+</td><td>╈</td><td></td><td>-+-</td><td></td><td>T</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | coida            | ſ  | 1      | t          | t        | ┢     | $\uparrow$   | ╞        | +        | ┼-            | Ļ        | ┼        | +            | +-           | ╀            | ╡         | ∔            |          | 1            |            |   |    |    | Ţ   | ┦   | +          | ╈   |       | -+- |          | T            |
| Pure Pictua       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       + <t< td=""><td>osus oregonensis</td><td>†</td><td>Ť</td><td>╋</td><td>†+</td><td>+</td><td>+</td><td>+ -</td><td>┿</td><td>+</td><td>+</td><td>+</td><td>+</td><td>+</td><td>+</td><td>+</td><td>1</td><td>1</td><td></td><td>1</td><td>1</td><td></td><td>1</td><td>1</td><td>+</td><td></td><td>•</td><td>┥.</td><td>-</td><td>+</td><td>Ť.</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | osus oregonensis | †  | Ť      | ╋          | †+       | +     | +            | + -      | ┿        | +             | +        | +        | +            | +            | +            | +         | 1            | 1        |              | 1          | 1 |    | 1  | 1   | +   |            | •   | ┥.    | -   | +        | Ť.           |
| s pilosus       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | pus pictus       | †  | t      | <u>†</u> - | ┢        | +     | ┢            | ┢        | +-       | ╞             | ╀        | +        | +            |              | · [ •        | ·  <br>+- | ·            | -        | $\downarrow$ |            | · |    | •  | +   | +   | +          | ╡   | +     |     |          | чL           |
| cidentalis       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s pilosus        | +  | +      | ╀          | ╞        | ϯ     | +.           | +-       | ╉        | +             | ╉        | +        |              |              |              |           |              | _        |              |            | T |    |    |     | -†  | •          | +   | -+    | -+  |          | -Τ           |
| Chus grandis       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       + <t< td=""><td>cidentalis</td><td>┨</td><td>†</td><td>+</td><td>╀</td><td>+-</td><td>+-</td><td>┨┈</td><td>+</td><td>╀</td><td>+.</td><td>+</td><td></td><td></td><td>-+-</td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>+</td><td>+</td><td>+</td><td>+</td><td>-+</td><td><u> </u></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | cidentalis       | ┨  | †      | +          | ╀        | +-    | +-           | ┨┈       | +        | ╀             | +.       | +        |              |              | -+-          |           | _            |          |              |            |   |    |    |     |     | +          | +   | +     | +   | -+       | <u> </u>     |
| les rudis       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | chue grandie     | +  | ╀      | +          | ╋        | ╀╸    | +            | ╉        | ╉        | +-            | ╞        | +        | -            | -            |              | +         | +            | +        | +            | *          | + | +  | +  | +   | +   | ╡          |     | +     | +   | `<br>•   | +            |
| Daue crassipes       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | les rudis        | ┥  | +      | +          | +        | +     | ╉            | ╀        |          | +             |          |          | +            |              |              |           |              | _        |              |            |   |    |    |     | ┦   |            | +   | -+    | -+  | -        | T            |
| i from the intervalue $i$ <td< td=""><td>DAVA CHIRRINGE</td><td>┢</td><td>+</td><td>+</td><td>╆</td><td>+-</td><td>╋</td><td>┥┈╴</td><td>╀</td><td>+</td><td>╀</td><td><u> </u></td><td><math>\downarrow</math></td><td><math>\downarrow</math></td><td><math>\downarrow</math></td><td></td><td>-</td><td></td><td><math>\bot</math></td><td></td><td>T</td><td></td><td></td><td></td><td>-+-</td><td></td><td>+</td><td>╉</td><td>+</td><td>╉</td><td>7</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DAVA CHIRRINGE   | ┢  | +      | +          | ╆        | +-    | ╋            | ┥┈╴      | ╀        | +             | ╀        | <u> </u> | $\downarrow$ | $\downarrow$ | $\downarrow$ |           | -            |          | $\bot$       |            | T |    |    |     | -+- |            | +   | ╉     | +   | ╉        | 7            |
| jramoermanus + + + + + + + + + + + + + + + + + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | +  | -+-    | +          | +        | +     | +            | +        | +        | <u>+</u><br>+ | +        | +        |              | +            | +            | +         | +            | +        | +            | +          | + | +  | +  | +   | +   | +          | +   | +     |     | <u> </u> | 4            |
| Vireutiusculus       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | дуановетанив     | +  | ┥      | ┥          | -+       |       |              |          |          | -             |          |          |              |              |              | <i></i>   |              |          |              |            |   | _  |    |     | -   | -          |     | -     | -   | +        | Ī            |
| Immuelis       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | htroutiusculus   | -+ | ++     |            |          |       |              |          |          |               |          |          | +            | +            | +            |           |              |          |              |            |   |    | +  |     | +   | 1          | ++  | +     | +   | +        | 1            |
| hee cabrilloi       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       +       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | amuelus          |    |        | -          |          | -     |              |          | •        | +             |          | +        |              | +            | +            | +         | +            | +        |              | +          |   | +  |    | +   | +   | 1          | +   | +     |     |          | T            |
| xantueii + + + + + + + + + + + + + + + + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | thes cabrilloi   | _  | - 1    |            | •••      | -     |              |          |          |               |          |          | <br>         | +            | +            |           |              | <u> </u> | -            |            |   | +  |    | +   | +   | <b>†</b> + | . + | .   + | +   |          | +            |
| producta + + + + + + + + + + + + + + + + + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | xantusii         |    |        |            | -        |       | ┢──          | -        |          | -             | -        | ⊢        | +            | <u> </u>     |              |           | 1            |          | <u> </u>     |            |   |    |    | ĺ   |     | +-         |     | - + - | +   | +-       |              |
| a equamolea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | producta         | 4  |        |            |          | ┝╼╸   | -            |          | -        |               | +        | -        | +            |              |              |           | 1.           |          | -            |            |   | T  |    |     |     | -          |     | -     | +   |          | F            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | а вонатова       |    |        |            |          |       |              | <u> </u> |          | ┞             |          | +        |              |              | +            |           |              |          | ļ            |            |   |    |    |     | T   | +-         | 1   | +     | +   |          |              |

i

ł

i
| $\sim$ |
|--------|
| rri -  |
| ž      |
| ¥.     |
| ÷.     |
| 8      |
| мI.    |
| Ψ.     |
| Ċ.     |
| ñ.     |
| ň      |
| č.     |
|        |
| 5      |
| ല      |
|        |
| Q.     |
| el I   |
| 0      |
| 77     |
| č.     |
|        |

| ORCANTSM                            | Jan       | Мат            | -<br>tj  | Ap:        | ווז        |              |          | E                | γay          |                  |         |          | J.<br>L  | Đ,           |              |          | յու          | :<br>       |              | 1000     | •  |            | +  |    | 2                | ŝ   | -        |            | <del>  '</del> |          |
|-------------------------------------|-----------|----------------|----------|------------|------------|--------------|----------|------------------|--------------|------------------|---------|----------|----------|--------------|--------------|----------|--------------|-------------|--------------|----------|----|------------|----|----|------------------|-----|----------|------------|----------------|----------|
|                                     | 15        | 6              | 13       | 7          | 17         | 1            | 9        | 5                | 5 2          | 5                | 5<br>9  | <u></u>  | <u>د</u> | 61           | 52           | 1        | 23           | \$          | ~            | 8        | 28 | <u> </u> 2 | 25 | đ  | 19               |     | ي<br>تا  |            |                |          |
| ARTHROPODA (Continued)              |           |                |          | -          |            |              |          |                  |              | -                | -       | ╞        | ┞        | -            | <b> </b>     | <u> </u> | -            |             | ļ            |          |    |            |    |    |                  | +-  |          |            |                |          |
| Insecta                             |           |                |          |            |            |              |          | ┢╾╴              | -            |                  | ╞       |          | ╞        |              | <br>         | _        | ╞            | ┞           | _            |          |    |            |    |    | T                | +   |          | +          | ╉              | T        |
| Duptera                             |           |                |          | +          | +          | +            | +        | ┢                | +            | +                | +       |          | <br>     | +            | +            | ┟┿       | +            | <b> </b> ≁. | ↓            |          |    |            |    |    | 1-               | ╀   | ╈        | ╉          | ╈              | Τ        |
| Hymenoptera                         |           |                |          |            |            | +            | $\vdash$ | <b> -</b>        | -            | +                | ╞       | -        | <b> </b> | +            |              | +        | -            | +           |              | ╞        |    |            |    |    | 1                |     | +        | ╉          | +              | 1-       |
| Py cnogoni da                       |           |                |          |            | † -        | -            | ┢        | ╞                |              | ╀                | ┝╌      | ╞        | ╞        |              | -            | $\vdash$ |              | -           | ↓_           |          | 1  | <u> </u>   |    |    | T                | +   | -        | - <b> </b> | - †            | -1-      |
| Anno thea hilgendorfi               |           |                | <b> </b> |            | † -        | †-           | -        | ╞                |              | +-               |         | ╞        | ╞        | +            | ┞            |          | $\downarrow$ | <b> </b>    | _            | ∔        | ↓_ |            |    |    | 1                | ╞   | +        | -          | ╀              | 1        |
| ENTOPROCTA                          |           | <u>†</u> .     |          | ſ          | <u>+</u>   |              | $\vdash$ | <u> </u>         |              |                  | ┢       | ┼─       | ╞        | -            | ╞            |          |              |             |              | -        |    |            |    |    | T                |     |          | +-         | +              | T        |
| Barentsia ±p.                       |           | $\uparrow$     | t        | 1          | t          |              | 1        | +                | ╉╌           | +                |         | +        | +        | $\downarrow$ | $\downarrow$ |          | +            |             | -            | -        | 1  |            |    |    | T                |     |          | ╉          | ┦              | _+       |
| BRYOZOA                             |           | t              | ţ.       |            | [          |              |          |                  | -            | $\left  \right $ | ┢       | +        | $\vdash$ | +            | ļ.           | -        | +            |             | 1            |          |    |            |    | ļ  |                  | ╈   | Ť        | ┥          |                |          |
| Bowerbankta gradilie                | -         |                |          |            | [          | +-           | +        | ╞                |              | +                | +       | ╞        | -        | +.           | ┢            | _        |              | <u> </u>    | $\downarrow$ |          |    |            |    | T  | +                | +   |          | +-         | +              | 7        |
| Bryozoa, unidentified               |           |                | +        | $\square$  | +          |              | ╞        |                  | -            | ŀ                | '<br> + |          | +        | +            | +            | +        |              | <u> </u>    |              | <u> </u> | 1  | +          | +  | •  | T                | +   | +        | ╈          | +              | T        |
| Bugula californica                  |           |                |          |            |            |              | -        | ┟╼               | +            | -                |         | $\vdash$ |          | -            |              | +        | ╄            |             |              |          |    |            |    | Ţ  | t                | 1   |          | +          | ┿┄             | 1        |
| Bugula neritina                     |           | [              | <u></u>  |            | $\vdash$   | -            |          |                  | $\vdash$     | +                | ┝       | +        | +        | +            | +            | +        |              |             |              |          |    | +          | +  | +  | +                | +   | +        |            | ╞              | T        |
| Celleporaria brunnea                |           |                |          |            | <u> </u> - |              | <b> </b> | ┝                | -            | +                |         | ┨        | _        |              | ļ            | -        | -            |             |              |          |    |            |    | 1  | +                | +   |          | +-         | ╀              | Τ-       |
| Cryptoeula pallasiana               |           |                |          |            | -          |              | 1        | -                | -            |                  | -       | -        |          |              | <u> </u>     |          |              | <u> </u>    | -            |          |    |            |    |    | +                | +   | <u> </u> | ╉          | ╀              | T        |
| Vatereipona arcuata                 | <b> </b>  |                |          | -          |            |              | -        |                  | -            | ╞                |         | 1        |          | -            | <b> </b>     | 1        | <u> </u>     |             |              | $\bot$   |    |            |    |    |                  | ++  |          | +-         | +              |          |
| <b>BCHINODERMATA</b>                |           |                |          | -          |            | ╞            | ╞        | -                |              |                  | ╞       | <b> </b> | ┦        | ╞            |              | <b> </b> |              |             |              |          |    |            |    | 1  | t                | 1   | ╉        | ╉          | +-             | 1        |
| Pisaster ochraceus                  |           | <b>†</b>       | †        | ┢──        | $\square$  | $\vdash$     | <u> </u> |                  | $\vdash$     | +                | +       | +        | +        | +            | -            |          | +            | <u> </u>    | ļ            | +        |    |            | +  | 1  | +                | +   | +        | ┥┈         | +              | T.       |
| Strongy locentrotue<br>franciscanus |           |                |          |            |            | <u> </u>     |          |                  | ┟            |                  |         | <u> </u> | +        | <u> </u>     | <u> </u>     | <u> </u> | <b> </b>     | -           |              |          |    |            |    |    | 1                |     | +        | +          | -              | . ]      |
| Strongy locentrotus<br>purpuratus   | <u>}</u>  |                | <u>†</u> | ╆          |            | <del> </del> | <u> </u> |                  | <del> </del> | <u> </u>         |         | +        | +        | <u> </u>     | -            | ļ        | .            |             |              |          |    |            |    |    |                  | +   | +        | +          | +              | +        |
| Parastichopus parvimensis           |           |                |          |            |            |              |          | ┢                | <u> </u>     | -                | ┨       | +        | <b> </b> | ļ            | <b> </b>     | <b> </b> | <b> </b>     |             |              |          |    |            | 1  | 1- | ┥─               | ┥╾  | +        |            | ╉─             | <b>-</b> |
| CHORDATA                            |           | $\vdash$       | ╞        | ╂—         | ┢          |              |          | ╀                | ╞            | +                | +       | +        | +        | _            |              |          |              |             |              |          |    |            |    | +  |                  | -   | ╺┼       | +          | +              |          |
| Ascidiaces                          |           | <del> </del> - | +        | ┢          | ╆—         | +            | +-       | +                | +            |                  | -       |          | _        | <u> </u> .   |              | <u> </u> |              |             |              |          |    |            | 1  | +  | +                | +   |          | +          | +              | Т        |
| Botrylloides =p.                    |           |                |          | <u> </u>   | ╞          | <b> </b>     | -        | -                | ┝            |                  | ╞       | -        | +        | -            |              | 1        | Ĺ            | [           |              |          |    | · • ·      | Ì  | +- | ╈                | +   | ╉        | ╋          | ╉              | Τ        |
| Ciona intestinalis                  | -+        | ┝╺┝            |          | ┝┤         |            |              | H        |                  | ┝            |                  | _       |          |          |              |              |          |              |             |              |          |    |            | †- | †  | +                | +   | +        | +          | ┨╻             | 1+       |
| Styela plicata                      | _         |                |          |            |            | _            |          |                  |              |                  |         |          | +<br>    |              | +            |          |              |             |              |          |    | Γ          | 1  | t  | $\left  \right $ | -   | +        | ╁┈         | ┢              |          |
| Ostalchthys                         |           | -              |          |            | -          | ╂—           | ╞        | $\left  \right $ |              | ╞                | ┞       | L        | Ļ        |              |              |          |              | Γ           |              |          |    | Ţ          | +  | +- | ╀                | ╉   | ╉        | -          | +              | 1        |
| Atherinidae (unident,)              | -         | $\vdash$       | ╞        |            | ┥─         | ╞            | ╞        | ┝                | ╞            | +-               | +       | +        | -        | ╞            | +            |          | $\downarrow$ |             | Γ            |          |    |            | +- | 1  | -                | -+- | +        | ╉          | +              | Т        |
| Leuresthes tenuis                   | <b></b> . |                |          | <b> </b> - | -          | +-           | ╞        | +                | Ļ            |                  | -       | -        |          | -            |              |          |              |             |              |          | Γ  |            | 1  | ╋  | ╉                | +   | +        | +          | +              |          |
| Cottidae (unident.)                 |           | $\vdash$       |          |            | +          | +            | _        | ╀                | -            | ╞                |         | -        | +        | +            |              |          |              |             |              |          |    | T          | 1  | +- | +                |     | -+       | +          | +              | 1        |

·阿尔尔·尔·尔·尔尔尔尔尔 法公司的法定 法改变的复数 医含体管周膜 化聚合素 医脊髓炎 医多角子 医外外外的 医外外外的 化丁丁基 the second s

Table 37 (continued)

| ORGANISM                | <u>3</u> 87, | 2        | ភ្ជ      | - Ē      | - <u>-</u> ;; | ļ,       | ļ        |    | A. |            |          |            | 3 |   |          |   |          |            | <b>B</b> Y |          | ┝──┥     | 10       |          | ð        | a de la compañía de |              | ¥0       |   | Ś |
|-------------------------|--------------|----------|----------|----------|---------------|----------|----------|----|----|------------|----------|------------|---|---|----------|---|----------|------------|------------|----------|----------|----------|----------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|---|---|
|                         |              | 9        | 1        | 1        | Ŧ             |          | ╉        | +  | 1  |            | 1        |            | 4 | 7 | 1        | F | 4        | r,         | 4          |          | ]        | ਰੋ       | न<br>जू  | 7        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1            | 7        | R | ┫ |
| CHURDATA (CONTLINUED)   |              |          |          |          |               |          |          | _  | _  |            | -        |            | - |   |          |   |          |            |            |          |          |          |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |          |   |   |
| Clinocottus sp.         |              | _        | ·        |          |               | •        | ļ        |    |    | <b> </b> . |          | L          | + |   |          |   |          |            |            | ┝        | ┝        | ┝        |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ┢            |          | Γ | Γ |
| Emblotocidue (unident.) |              |          |          | <b>†</b> | 1             | †-       | ┢╌       | ┢  | +  | _          | <b> </b> | -          |   |   | +        |   |          | †-         | ╞          | ┞        | ┢        | ┢┈       |          | ╞        | ┢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |          | + |   |
| Äves                    |              | <b> </b> | 1-       | Ţ        | t             | ┞─       | ┢        | ┝  | ┢  | -          | ╞        |            |   |   |          |   |          | t          | $\dagger$  | ┢        | ┢        | -        |          | +        | ╞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |          |   | T |
| (Comon name)            |              | 1-       |          |          |               | ϯ        | ┢        | ┢  | ┢  | _          |          | <b> </b>   |   |   |          |   | Γ        |            | $\uparrow$ | ┢        | ╀        | +-       | ┝        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +            |          |   |   |
| Spotted sandpiper       | Γ            | t        | t        | t        | 1             | +        | †        | ┥  |    | ╞          |          | -          |   |   |          |   |          |            | ╞          | ╉        | -        | ╉┈       | ╀        | +        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |          |   |   |
| Western grebe           | <b>F</b> -   | <b>†</b> | ┢        | 1-       | 1-            | ╞        | <b>†</b> | ┢┈ |    | +          |          | <b> </b>   |   | + |          |   |          | $\uparrow$ | ╞          | ┢        | ┢        | +        | -        |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\downarrow$ |          |   |   |
| Ruddy turnstone         |              | -        | +        |          | ╞             | <u> </u> | +        | ┝  |    |            | L        |            |   |   |          |   | ľ        | †          |            |          | ┢        | ┝        | ┝        |          | ┞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L            |          |   |   |
| Willet                  | -            | ╞        | <u>†</u> | ſ        | <del> </del>  | $\vdash$ | $\vdash$ | ┝  | -  | <u> </u>   |          | <u> </u> . |   |   |          |   |          | t          | ┢          | ┟╴       | ┢        | ┢        | ╞        |          | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +            |          | + | + |
| Crow                    |              |          | <b> </b> |          | 1             | <u> </u> | +        |    | ╞  | _          |          | <b> </b>   |   |   |          | + | 1        | t          | ╞          | ┢        | ╀        | +        | +        | -        | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -            |          |   | + |
| Sanderling              |              |          |          | +        | +             |          | +        |    |    |            | -        | L          |   |   |          |   |          | t          |            | ┢        | <u> </u> | ┝        | -        | ╞        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ╞            | +        | + | + |
| Comon koon              |              |          |          | +        |               | -        |          |    |    | +          |          |            |   | + |          |   |          | <b>†</b>   | <b> -</b>  | ┝        | $\vdash$ |          |          | -        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | L        |   |   |
| Barn swallow            |              |          |          |          |               |          |          |    | ļ  | +          | L        |            |   | + |          |   | 1        | 1-         | ┦─         | ┢        |          |          | ┝        | $\vdash$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ┢            | _        |   |   |
| Caspian tern            |              |          |          |          |               | <u> </u> |          |    |    | <br>       |          |            |   |   |          | Γ |          | -          | -          | +        | -        |          | ┝        |          | <b> </b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -            |          |   |   |
| Ring-billed gull        |              |          | H        | Ļ        | F.            |          | l+       | +  |    | +          |          | +          | + | + | [        | + | +        | t          | +          | +        | +        | +        | +        |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +            | +        | + | + |
| Heermann's gull         |              |          | -        |          |               |          | <u> </u> |    |    |            |          | +          | _ |   |          | + |          |            |            | ╞        | -        | ╞        | <b> </b> | +        | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +            | L        | + | + |
| Bonaparte's gull        |              |          |          | _        |               | -        | +        |    |    |            |          | Ĺ          |   | Ĺ | ſ        |   | <b>†</b> | F          | <u> </u>   | +        | ┝        | -        | ┝        | -        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -            | Ļ        |   | + |
| Marbled godwit          | -            |          | <u>,</u> | +        |               |          |          |    |    |            |          |            |   |   |          | ŀ | -        | <u> </u>   | +          | $\vdash$ |          | +        | +        | -        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b> </b>     | Ļ.       | + | + |
| Belted kingfisher       |              |          |          |          |               |          | -        |    |    | <b>-</b>   |          |            |   |   | <u>.</u> | - |          |            |            |          |          | <u>-</u> | —        | ļ        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | +        |   |   |
| Long-billed curlew      |              |          |          |          |               | +        |          |    |    | <br>       | <u> </u> |            |   |   | <b>†</b> |   | †        |            |            |          | <u> </u> | ┨        |          | ╂—       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -            | <b> </b> |   |   |
| Brown pelican           |              |          | -        | _        |               |          |          |    | +  | +          |          | +          |   | + |          | + | <b>†</b> |            | -          | + -      | ╞╌╸      | +        | [<br>    | +        | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +            |          |   | L |
| Eared grebe             |              | _        | _        |          |               |          |          |    |    |            |          | +          |   |   |          |   |          | -          | -          |          |          | +        |          | +        | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +            |          | + |   |
| Black-bellied plover    |              | _        |          |          |               | +        |          |    |    |            |          |            |   |   |          |   |          |            |            |          |          |          | -        | _        | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | +        | + | + |
| Parasitic jaeger        |              | 4        |          |          |               |          |          |    |    |            |          |            |   |   |          |   |          | +          |            |          | -        |          | -        | -        | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |          |   |   |
| Least tern              | -            | -        | -        | -        |               |          | -        |    |    |            |          |            |   |   |          |   | +        |            |            |          |          | -        |          |          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | <br>     |   |   |
| Forster's tern          |              |          |          |          |               |          | +        | +  |    | +          |          |            |   |   |          |   | +        | +          | +          |          | +        | +        | +        | +        | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +            | +        | + | + |
| Mamma 11 a              |              |          |          | -        |               |          |          |    |    |            |          |            |   |   |          |   |          |            |            | -        | $\vdash$ | -        | $\vdash$ |          | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |          |   | - |
| Domestic cat            |              |          |          |          |               |          |          |    |    |            |          |            |   |   |          |   |          |            |            |          |          |          |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |          |   | + |
| Rat                     |              |          |          |          |               |          |          |    |    |            |          |            |   | + |          | + | -        |            |            | -        |          |          |          |          | ┞_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ╞            |          | _ |   |

204

MARINE STUDIES OF SAN PEDRO BAY, CALIFORNIA. PART 15. DECEMBER 1978

## H. DIVER SURVEYS OF THE SANSINENA OIL SPILL IMPACTS

## ON BENTHIC INVERTEBRATES

#### INTRODUCTION

Following the explosion of the <u>Sansinena</u> on December 17, 1976, the presence of Bunker C oil on the surface of the bottom substrate was first observed and photographed on January 4, 1977 by the Harbors Environmental Projects (USC) team of divers. Three original transects were sampled (Fig. 1) and oil was found in small globules, patches (10-25 cm in diameter) and in a large pool near the ship's stern.

To determine the persistence of the oil and its impact upon the large benchic invertebrates which make up the faunal component of this bottom community, a monthly study was established along three 800 ft = 244 m transects (Fig. 2). Beginning in late January and continuing through September of 1977, the transects were analyzed for both invertebrates and the presence of oil. Photographs and species counts were taken at 32 m intervals along the transect to document any changes in the oil, substrate or benchic fauna with time.

## METHODS

Transect lines consisting of 244 m (800 ft.) 6 mm ( $\frac{1}{4}$ ") polypropylene line were weighted at 30.5 m (100 ft ) intervals with 250 g lead weights. A 500 g cylindrical anchor was attached at an end and the line was laid out along the harbor bottom along the designated transect locations. When laid, one end was buoyed with a small float and a diver team descended to the harbor bottom and sampling proceeded along the line.

The number of organisms visible within a  $3.5 \times 3.5$  m radius of each weight along the line was recorded. A photograph was taken at each 30.5 m interval by holding the camera 1.8 m above the bottom.

All photographs were made with a Nikonos III camera equipped with twin Vivitar strokes (Model 292) housed in Ikelite cases.

Once the nine stations were sampled along each transect, the line was retrieved and moved to the next transect location.

#### RESULTS

## **Preliminary** Survey

In the emergency reconnaissance survey of January 4, 1977, oil was found in small quantities spread over a large area southwest of the ship and two sizeable oil pools were present near the ship's bow and stern. Much of the oil appeared to be broken up into small clumps or globules and covered with silt; as such it was not apparent on the bottom unless touched. Figure 1 shows the January transects.

Patches of oil werefound on benthic organisms and large areas covered with oil pools appeared to be devoid of invertebrates. Three species were found to be quite numerous in the area outside the pools: Pachycerianthus johnsoni, a burrowing anemone; Stylatula elongata, the sea pen; Cancer anthonyi, a large crab; and Panope generosa, the geoduck clam.

A few dead burrowing anemones were found and oil was observed on and around sea pens and anemones, but no marked mortality was apparent.

## Monthly Surveys

The three transects sampled for the monthly surveys are indicated on Fig. 2. The depths for each station on the transects are given in Table 1.

Transect I proceeded toward the southwest from the mid-ship position. The depth remained at 8-10 m (26-33 ft ) for the first 7 stations and then sloped abruptly down to 15-18 m (50-60 ft ) at stations 8 and 9, because of the ship channel irregularities near the dock. Transect II approached the ship from the stern and was entirely within the ship channel, ranging in depth from 15-18 m. Transect III crossed a relatively shallow and somewhat rocky portion of the harbor near the ship's bow and ranged from 8-18 m, (26-60 ft ) in depth.

## Benthic Oil

The oil which appeared to be scattered in the relatively shallow areas southwest of the ship was observed at stations 5-7 of transect I in the February-March study but soon disappeared (Table 2). Oil remained in the deeper ship channel in considerable amounts through the entire study period.

Transect II passed directly through a large pool near the stern of the ship. This pool persisted throughout the study and was in fact still present on December 2, 1977 (see Part I, this volume).

Transect III, in the bow area only passed through small traces of oil and these also disappeared from view with time.

## Marine Life

The species and numbers of benthic invertebrates observed along each transect are summarized in Table 3. Burrowing anemones (Pachycerianthus johnsoni), sea pens (Stylatula and Virgularia) and the geoduck (Panope generosa) are all sessile, long-lived suspension feeders and their total population density seemed not be affected by the oil spill. Both *Hermissenda crassicornis* (nudibranch) and *Cancer anthonyi* are mobile and probably move about seasonally. They were not common enough to indicate any trend but also appeared unaffected by the presence of oil.

## DISCUSSION

The impact of oil on benthic invertebrates was probably considerable. The oil that formed pools near the ship's stern for many months probably killed all the marine life which had occurred there. However, transects which covered large portions of the surrounding area indicated little or no quantitative impact upon the benthic invertebrates (Table 3).

Exact quantitative comparisons on a month to month basis were not possible for our data because the transect could not be laid in exactly the same location each month. Permanent lines could not be installed because of the salvage efforts that continued on the ship's hulk. However, the same general areas were sampled each time and invertebrate densities were similar for each species throughout the study period. Tables 4-11 give monthly transect survey data.

There was a period in April and May of 1977 when poor visibility made underwater observations almost impossible and very low numbers of animals were hence observed. The numbers in the table thus reflect the poor visibility rather than depleted fauna.

Sampling for June through September, when visibility improved, indicated that population densities were approximately the same as at the start of the study. Since these organisms are mainly long-lived suspension feeders, it is reasonable to assume that they were present but not counted in the spring surveys of April and May.

The general benchic community in the shallower water (Transects I and III) is probably richer due to the lack of dredging and large ship traffic in those areas. Only small amounts of oil settled in the shallow areas, probably spread by the explosion itself. This diverse and highly productive area seems relatively unaffected by the spill.

The deeper ship channel of transect II and stations 8 and 9 of transect I were more seriously affected by the oil spill. However this area had been continually disturbed by ship traffic before the explosion and the impact in terms of total density appears not to have been great. Stations 8 and 9 of transect II were beneath a sizeable oil pool for over 12 months and marine life in that local area probably was killed. No studies of biological recovery have been made since the end of the cleanup operations and resumption of docking. 1

NR THERE AND

Table 38. Union Transect\* Depths, 26 January 1977

TRANSECT I - Midship from SW to Tanker.

\_.\_\_ . . . .

| <u>Station</u> | Depth (feet) |
|----------------|--------------|
| 1              | 25-30        |
| 2              | 25-30        |
| 3              | 25-30        |
| 4              | 25-30        |
| 5              | 25-30        |
| 6              | 25-30        |
| 7              | 25-30        |
| 8              | 50-60        |
| 9              | 50-60        |

TRANSECT II - S.E. to Stern.

| Station | Depth (feet) |
|---------|--------------|
| 1       | 50-60        |
| 2       |              |
| 3       |              |
| 4       | ALL          |
| 5       |              |
| 6       | STATIONS     |
| 7       | 011120118    |
| 8       |              |
| 9       |              |

TRANSECT III - S.W. to Bow.

| Station | Depth (feet) |
|---------|--------------|
| 1       | 25-30        |
| 2       | 25-30        |
| 3       | 25-30        |
| 4       | 50-60        |
| 5       | 50-60        |

\* Transects began 800 ft from the <u>Sansinena</u> and terminated at the ship site, with stations at 100 ft intervals, except for the S.W. bow transect. Table 39. Distribution of Oil on the Benthos.

## Transect I

|          | 1 1 | 28 Feb- | 26    | 25  | 29   | 25       | 26     | 29    |
|----------|-----|---------|-------|-----|------|----------|--------|-------|
|          |     | 4 Mar.  | April | May | June | July     | August | Sept. |
| Station  | 1   | 0       | *     | *   | 0    | 0        | 0      | 0     |
|          | 2   | 0       | -     | -   | 0    | 0        | 0      | 0     |
|          | 3   | 0       | _     | -   | 0    | 0        | 0      | 0     |
|          | 4   | 0       | _     | _   | 0    | 0        | 0      | 0     |
|          | 5   | L       | -     | -   | 0    | 0        | 0      | 0     |
|          | 6   | L       | _     | -   | 0    | L        | 0      | 0     |
| <u> </u> | 7   | L       | -     | -   | 0    | L        | L      | Ľ.    |
|          | 8   | L       |       | L   | 0    | м        | L      | L.    |
|          | 9   | L       | _     | -   | м    | м        | L      | M     |
| the rece |     |         |       |     |      | <b>-</b> |        |       |

# \*No records made

## Transect II

|         |   | 28 Feb- | 26    | 25  | 29   | 25              | 26       | 29         |
|---------|---|---------|-------|-----|------|-----------------|----------|------------|
|         |   | 4 Mar.  | April | May | June | July            | August   | Sent.      |
| Station | 1 | 0       | 0     | _   | 0    | 0               | 0        | 0          |
|         | 2 | 0       | 0     |     | 0    | 0               | 0        | 0          |
|         | 3 | 0       | 0     | _   | 0    | 0               | 0        | 0          |
|         | 4 | 0       | 0     | _   | 0    | 0               | 0        | <u> </u>   |
|         | 5 | 0       | 0     | -   | 0    | 0               | 0        |            |
|         | 6 | 0       | 0     | -   | 0    | 0               | 0        |            |
|         | 7 | M       | 0     | _   | 0    | I.              |          | - <u>-</u> |
|         | 8 | н       | Н     | -   | Н    | — <i>=</i><br>М | н        | <br>       |
|         | 9 | H       | Н     | -   | H    | н               | <u>н</u> | H          |

## Transect III

|         |   | 28 Feb-<br>4 Mar. | 26<br>April | 25<br>May | 29<br>June | 25<br>July | 26<br>August | 29<br>Sept |
|---------|---|-------------------|-------------|-----------|------------|------------|--------------|------------|
| Station | 1 | 0                 | _           | 0         | 0          | L          | 0            |            |
|         | 2 | 0                 | -           | 0         | 0          | L          | 0            |            |
|         | 3 | 0                 |             |           | 0          | 0          |              | 0          |
|         | 4 | 0                 | -           | 0         | 0          | 0          | <u> </u>     | - č        |
|         | 5 | L                 | -           | 0         | 0          | 0          |              |            |
|         | 6 | L                 | -           | 0         | 0          | 0          | 0            | <u> </u>   |
| -       | 7 | L                 | _           | L         | L          | 0          | <u> </u>     | <u> </u>   |
|         | 8 | 0                 | -           | 0         | 0          | <u> </u>   | <u> </u>     |            |
|         | 9 | 0                 | -           | 0         | 0          | 0          | 0            | L U        |

L = light (small globules)

M = medium (large globules)

H = heavy (pool)

Table 40. Benthic Invertebrates Observed in Diver Transects, 1977.

Transect I

|                             |         |         | DATE. | 1977 |      |      |      |       |  |
|-----------------------------|---------|---------|-------|------|------|------|------|-------|--|
|                             | 26      | 28 Feb. | 26    | 25   | 29   | 25   | 26   | 29    |  |
| SPECIES                     | January | 4 March | April | Мау  | June | July | Aug. | Sept. |  |
| Coelenterata                |         |         |       |      |      |      |      |       |  |
| Pachycerianthus johnsomi    | -       |         |       |      |      |      |      |       |  |
| (burrowing anemone)         | 31      | 57      | 4     | و    | 16   | 65   | 00   | 15    |  |
| Stylatula elongata          |         |         |       | 1    | ,    | }    | 1    | 1     |  |
| (sea pen)                   | 40      | 16      | 0     | 0    | 13   | 4    | ~    | 12    |  |
| Virgularia sp.<br>(sea pen) |         | 5       | -     |      | (    | 1    | 1    |       |  |
|                             | 07      | T 7     | 4     | 5    | 2    | 0    | -1   | 4     |  |
| Mollusca                    |         |         |       |      |      |      |      |       |  |
| Panope generosa             |         |         |       |      |      | _    |      |       |  |
| (geoduck clam)              | 51      | 99      | 0     | 0    | 08   | 40   | 62   | 45    |  |
| (nudibranch)                |         |         | ,     |      |      |      | -    |       |  |
|                             | 7       | 11      | 0     | 0    | 0    | Ч    | 0    | 00    |  |
| Arthronoda                  |         |         |       |      |      |      |      |       |  |
| Cancer anthonui             | 4       | c       | c     | ç    | c    | (    | I    |       |  |
|                             | p       |         | 2     | 2    | N.   | 0    | 0    | -1    |  |
| TOTALS                      | 146     | 171     | Ŋ     | 9    | 111  | 110  | 102  | 101   |  |
|                             | -       |         | -     |      |      |      |      |       |  |

Aug.

. . .

TABLE 40 (Continued)

# Transect II

|                                                                |         |         | DATE, | 1977  |       |         |          |          |
|----------------------------------------------------------------|---------|---------|-------|-------|-------|---------|----------|----------|
|                                                                | 26      | 28 Feb. | 26    | 25    | 29    | 25      | 26       | 29       |
| SPECIES                                                        | January | 4 March | April | May   | June  | νιυς    | Aug.     | Sept.    |
| Coelenterata<br>Pachycerianthus johnsoni<br>Stylatula elongata | 24      | *       | T     | * 1   | 20 CV | 65<br>4 | 22<br>7  | 31<br>12 |
| Mollusca<br>Panope generosa<br>Hermissenda crassicornis        | 20<br>5 | 1 5     | 00    | l i t | 22    | 45      | 62<br>62 | 8<br>20  |
| Arthropoda<br>Cancer anthonyi                                  | 4       | I       | 0     | 1     | 0     | 0       | 2        |          |
| TOTALS                                                         | 103     | I       | 1     | 4     | 29    | 115     | 63       | 102      |

\*no data due to poor visibility and low light.

TABLE 40 (Continued)

# Transect III

|         | 29      | Sept.   | 91<br>97                                                                        | 11<br>12                                                | o                             | 176    |
|---------|---------|---------|---------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------|--------|
|         | 26      | Aug.    | 64<br>44                                                                        | 00                                                      | Ŷ                             | 69     |
|         | 25      | July    | ი ი<br>ი<br>ი                                                                   | 31<br>1                                                 | 0                             | 16     |
| 17      | 29      | June    | 43<br>14<br>0                                                                   | 118<br>2                                                | o                             | 177    |
| VTE, 19 | 25      | λ<br>ε  | 18<br>0 2                                                                       | 35<br>2                                                 | 0                             | 57     |
|         | 26      | APELL   | 010                                                                             | 0 0                                                     | 0                             | ы      |
|         | 28 Feb. | 4 March | 8 8 3 3<br>7 3<br>7 3<br>7 3<br>7 3<br>7 3<br>7 3<br>7 3<br>7 3<br>7 3          | 64<br>22                                                | 12                            | 166    |
|         | 26      | January | 7 F 6                                                                           | ç<br>S<br>O                                             | 0                             | 87     |
|         | SPECIES |         | Coelenterata<br>Pachycerianthus johnsom<br>Stylatula elongata<br>Virgularia sp. | Mollusca<br>Parope generosa<br>Hermissenda crassicornis | Arthropoda<br>Cancer anthonyi | TOTALS |

Table 41. Animals and Oil Found Along the <u>Sansinena</u> Transects Diver Survey, 26 January 1977.

| Stations                          |             |          | Tr       | ans                                          | ec             | tΙ              |                |                |               |
|-----------------------------------|-------------|----------|----------|----------------------------------------------|----------------|-----------------|----------------|----------------|---------------|
| SPECIES                           | 1           | 2        | 3        | 4                                            | 5              | 6               | 7              | 8              | 9             |
| Coelenterata                      |             | 1        | <u> </u> |                                              | 1-             |                 |                |                | 1-            |
| Cerianthid (large)                | 6           | 1        | 3        | 3                                            | 5              |                 | 1              |                | 2             |
| Cerianthid (small)                | 4           | +        | ┼┯       | <u>                                     </u> | Ľ              |                 | $+\frac{1}{7}$ | +              | 1-            |
| Stylatula sp. (sea pen)           | <u>∦_</u> : | 20       | 15-      | 2                                            | $\mathbf{h}$   | <del>31</del> — | + +            | +              | + -           |
| Virgularia sp. (sea pen)          | 3           |          | 15       |                                              | <u> </u>       |                 | 1              | +              | 1             |
| Mollusca                          |             |          |          |                                              |                |                 |                |                |               |
| Hermissenda sp. (nudibranch)      | 1           |          |          | 1                                            |                |                 | 1              | 1              |               |
| Panope sp. (clam)                 | 7           | 8        | 24       | 7                                            | 5              | 1.              |                | 1              |               |
| Arthropoda                        |             | Ì        |          |                                              |                |                 | Τ              |                |               |
| Crustacea                         | K           |          | 1        |                                              |                |                 | l l            |                |               |
| Canaan sp                         | ii ii       |          |          |                                              |                |                 |                |                | 1             |
|                                   | <u> </u>    | [ 1 -    | 1        | L <u></u>                                    | I              | 3               | <u> </u>       |                |               |
| Stations                          |             |          | Tra      | ans                                          | ect            | · T1            |                |                |               |
| SPECIES                           | 1           | 2        | 3        | 4                                            | 5              | 6               | 7              | 8              | 9             |
| Coelenterata                      |             |          |          |                                              |                | P L             |                | <u>  -</u>     |               |
| Cerianthid (large)                | 1           | 3        | 1        | 1                                            | ,              | nr              | 16             | F              |               |
| Cerianthid (small)                |             | <u> </u> | <b>-</b> |                                              | <u> </u>       | na e            | ╞╬╛            | AR             | -             |
|                                   |             |          |          | <u> </u>                                     |                | 60              | <u> </u>       | 8              | $ \vdash $    |
| Mollusca                          |             |          |          |                                              |                |                 |                | 0              |               |
| Hermissenda sp. (nudibranch)      |             |          | 3        |                                              | 2              | Γ'n             |                | H              |               |
| Panope sp. (clam)                 |             | 15       | 5        |                                              |                | 10              | <u> </u>       | 7              | ┝╾┦           |
| Arthropoda                        |             |          |          |                                              |                | 122             | _              | 18             |               |
| Crustacea                         |             |          |          |                                              |                |                 | ł              |                |               |
| Canach an                         |             |          |          |                                              |                | 8               |                |                |               |
| cancer sp.                        | 2           |          |          |                                              | 1              | <u> </u>        |                |                | 1             |
|                                   |             |          |          | I                                            |                |                 |                |                |               |
| SPECIES                           | Sta         | 1t10     | ns       | ┢                                            | $\frac{11}{1}$ |                 | 3              | $\frac{11}{4}$ | $\frac{1}{5}$ |
| Coelenterata                      |             |          |          |                                              |                |                 | <u> </u>       | <u> </u>       |               |
| Cerianthid (large)                |             |          |          | l                                            | 6              | 8               | 2              | 7              | 2             |
| Cerianthid (small)                |             |          |          | - #                                          |                | 1               |                |                | -             |
| Stylatula sp. (sea pen)           |             |          |          |                                              | 1              |                 |                |                |               |
| Virguiaria sp. (sea pen)          | •••         |          |          |                                              | 3              | 1               |                | 3              |               |
| Mollusca                          |             |          |          |                                              |                |                 |                |                |               |
| Hermissenda sp. (nudibranch)      |             |          |          |                                              |                |                 | 3              |                |               |
| ranope sp. (clam)                 |             |          |          |                                              | 13             |                 | 10             | 28             |               |
| Miscellaneous (orange Cerianthid) |             |          |          |                                              |                | 1               |                |                |               |
|                                   |             |          |          |                                              |                |                 |                |                |               |

\*Organism was found dead.

....

į

| · · · · · · · · · · · · · · · · · · · | , -                |    |    |    |    |    |     |    |    |  |  |
|---------------------------------------|--------------------|----|----|----|----|----|-----|----|----|--|--|
| Station Depth (in                     | Transect I (3/4/77 |    |    |    |    |    |     |    |    |  |  |
| ( <u>f</u> t)                         | 20                 | 22 | 22 | 24 | 25 | 25 | 45  | 50 | 50 |  |  |
| ANIMALS                               | 1                  | 2  | 3  | 4  | 5  | 6  | 7   | 8  | 9  |  |  |
| Coelenterata                          |                    |    |    |    |    |    |     |    |    |  |  |
| Cerianthid (large)                    | 2                  | 2  |    | 2  | 6  | 9  | 8   | 1  |    |  |  |
| Cerianthid (small)                    | 2                  | 2  |    | 2  | 4  | 8  | 8   | 1  |    |  |  |
| Stylatula sp. (sea pen)               | 1                  | 12 |    |    |    | 2  |     |    | 1  |  |  |
| Virgularia sp. (sea pen)              | 2                  | 10 |    | 6  |    |    | 3   |    |    |  |  |
| Mollusca                              |                    |    |    |    |    |    |     |    |    |  |  |
| Hermissenda sp. (nudibranch)          |                    |    | 3  |    | 2  | 6  |     |    |    |  |  |
| Panope sp. (clam)                     | 10                 | 10 | 12 | 12 | 11 | 5  | 6   |    |    |  |  |
| Oil Presence                          |                    |    |    |    |    | SC | OME |    |    |  |  |

February-March, 1977

| Station Depth (in                                                                                                |    | T: | ran | sec | t I | I_( | 2/2        | 8/7        | 7) |  |  |  |
|------------------------------------------------------------------------------------------------------------------|----|----|-----|-----|-----|-----|------------|------------|----|--|--|--|
| ft.)                                                                                                             | 55 | 55 | 52  | 53  | 55  | 55  | 55         | 55         | 55 |  |  |  |
| ANIMALS                                                                                                          | 1  | 2  | 3   | 4   | 5   | 6   | 7          | 8          | 9  |  |  |  |
| Miscellaneous<br>Kelp Fish                                                                                       |    |    |     | 1   |     |     |            |            |    |  |  |  |
| (OVERCAST AND RAIN MADE CONDITIONS VERY DARK, AND OBSERVA-<br>TIONS IMPOSSIBLE; NO OTHER ANIMAL SIGHTINGS MADE.) |    |    |     |     |     |     |            |            |    |  |  |  |
| Oil Presence                                                                                                     |    |    |     |     | Sor | ne  | Laı<br>Poc | rge<br>bls | s. |  |  |  |
| S = Some                                                                                                         |    |    |     |     |     |     |            |            |    |  |  |  |

| Station Depth (in                      |    | -<br>T: | rans | sec  | t I      | <br>II   | (3/        | 4/7 | 7)       |
|----------------------------------------|----|---------|------|------|----------|----------|------------|-----|----------|
| NUTRILIC IT. )                         | 15 | 15      | 15   | 15   | 20       | 30       | 30         | 35  | 35       |
| ANIMALS                                | 1  | 2       | 3    | 4    | 5        | 6        | 7          | 8   | 9        |
| Coelenterata<br>Cerianthid (large)     |    | 3       | 10   |      |          |          |            | 10  | 5        |
| Stulatula (small)                      | L  |         |      |      |          |          |            | 2   | 2        |
| Vingulanda sp. (sea pen)               |    |         |      |      | 7        | 5        | 10         | 1   | 5        |
| Correction Sp. (sea pen)               | 3  |         |      | 1    | 1        |          |            |     | 3        |
| Gorgonians                             |    |         |      | +    | +        |          |            | · · |          |
| Mollusca                               | I  |         |      |      |          |          |            |     |          |
| <u>Hermissenda</u> sp. (nudibranch)    |    | 5       | 5    |      |          | 3        | 6          |     | 3        |
| Ainnites sp. (rock scallop)            |    |         |      | +    | +        | <u> </u> | - <u> </u> |     | <u> </u> |
| Panope sp. (clam)                      | 25 | 3       |      | 6    |          | 12       |            | 3   | 15       |
| Arthropoda<br><u>Cancer</u> sp. (crab) |    |         |      |      | 1.2      |          |            |     |          |
| Oil Presence                           |    |         |      | ╞╼╼╉ | <u> </u> |          |            |     |          |
|                                        | L  |         |      |      |          | Some     | 2          |     |          |

+ = presence

| Station                            | Transect I |          |    |    |        |    |    |    |    |  |
|------------------------------------|------------|----------|----|----|--------|----|----|----|----|--|
| ANIMALS                            | 1          | 2        | 3  | 4  | 5      | 6  | 7  | 8  | 9  |  |
| Coelenterata<br>Cerianthid (large) |            | <b>†</b> |    |    | ,<br>, |    |    | 3  |    |  |
| Virgularia sp. (sea pen)           |            | Į        |    |    |        |    |    | i  |    |  |
| Depth (in feet)                    | 25         | 25       | 25 | 30 | 33     | 35 | 50 | 52 | 52 |  |
| Visibility (in feet)               | 3          | 3        | 3  | 6  | 8      | 8  | 8  | 8  | 8  |  |

Table 43. Animals and Oil found along the <u>Sansinena</u> Transects I-III. 26 April, 1977

|               | Station                           | Transect II    |   |    |          |    |   |   |      |   |  |  |  |
|---------------|-----------------------------------|----------------|---|----|----------|----|---|---|------|---|--|--|--|
| ANIMALS       | · · · · · · · · · · · · · · · · · | 1              | 2 | 3  | 4        | 5  | 6 | 7 | 8    | 9 |  |  |  |
| Coelenterata  |                                   |                |   |    |          |    |   |   |      |   |  |  |  |
| Cerianthid    |                                   |                |   |    |          |    |   | 1 |      |   |  |  |  |
| Depth (in fee | et)                               |                |   | 52 | fee?     | et |   |   |      |   |  |  |  |
| Visibility (i | n feet)                           |                |   | 3  | <u> </u> |    |   |   | ••   |   |  |  |  |
| 0i1           |                                   | · <del> </del> |   |    |          |    |   |   | - De |   |  |  |  |

.....

| Station                                            | Transect III |          |     |          |            |    |          |    |    |  |  |  |
|----------------------------------------------------|--------------|----------|-----|----------|------------|----|----------|----|----|--|--|--|
| ANIMALS                                            | 1            | 2        | 3   | 4        | 1 5        | 6  | 7        | 8  | 9  |  |  |  |
| Coelenterate<br>Cerianthid (large)<br>Stulatula sp |              | <b> </b> |     | 1        | ]<br> <br> |    | <u> </u> |    | 1  |  |  |  |
| Mollusca                                           |              | <u> </u> | ╪── | <u>+</u> | ÷.—        | +  | +        |    | +  |  |  |  |
| Panope sp. (clam)                                  |              |          |     |          |            |    | 2        |    |    |  |  |  |
| Depth (in feet)                                    | 12           | 13       | 13  | 20       | 26         | 30 | 35       | 38 | 38 |  |  |  |
| Visibility (in feet)                               | 1            | 1        | 11  | 3        | 6          | 8  | 8        | 8  | 8  |  |  |  |

| Station                            | <u> </u> |    | T  | rans | ect | I  |    |    |
|------------------------------------|----------|----|----|------|-----|----|----|----|
| ANIMALS                            | 1        | 2  | 3  | 4    | 5   | 6  | 7  | 8  |
| Coelenterata<br>Cerianthid (large) |          | 1  | 1  | 2    | 2   |    |    |    |
| Cerianthid (small)                 |          |    |    |      | 2   |    |    | [  |
| Depth (in feet)                    | 22       | 23 | 25 | 25   | 25  | 25 | 32 | 32 |
| Visibility (in inches)             | 3        | 6  | 6  | 6    | 6   | 36 | 60 | 60 |

# Table 44. Animals and Oil found along the <u>Sansinena</u> Transects I-III. 25 May, 1977.

|                                                                                | Transect II                                                                            |
|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| A stern transect was<br>oil recovery operation in<br>will indicate the success | not possible due to the presence of an the transect area. The June survey of recovery. |

| Station                                                      |    | ••••• |          |          | Trai    | isect    | t II.    | [        |    |
|--------------------------------------------------------------|----|-------|----------|----------|---------|----------|----------|----------|----|
| ANIMALS                                                      | 1  | 2     | 3        | 4        | 5       | 6        | 7        | 8        | 9  |
| Coelenterata<br>Cerianthid (large)<br>Stulatula gn (sea pen) |    |       | 1        |          | 3       | 2        | 1        | 3        | 10 |
| bogutzu sp. (seu pen)                                        |    |       | <u> </u> | <u> </u> | <u></u> | <u> </u> | <u> </u> | <u> </u> | ·  |
| Mollusca<br>Hermissenda sp.<br>Panope sp. (clam)             |    |       |          | 10       |         |          | 20       | 2        |    |
| Depth (in feet)                                              | 12 | 12    | 15       | 15       | 18      | 20       | 30       | 35       | 35 |
| Visibility (in feet)                                         | 1  | 1     | 1        | 1        | 3       | 3        | 8        | 8        | 8  |
| 0i1                                                          |    |       |          |          |         |          | *        |          |    |

\* Indicates presence of oil.

Table 45. Animals and Oil found along the Sansinena Transects I-III. June 29, 1977.

|                                    |    |    |    | Ţ  | rans | ect | I  |    |       |
|------------------------------------|----|----|----|----|------|-----|----|----|-------|
| ANIMALS                            | 1  | 2  | 3  | 4  | 5    | 6   | 7  | 8  | 9     |
| Coelenterata<br>Cerianthid (large) | 3  | 2  | 2  | 5  | 3    | 1   | 1  | 2  |       |
| Mollusca<br>Panone sp. (clam)      | 15 | 12 | 10 | 13 | 15   | 15  |    |    |       |
| Arthropoda<br>Cancer sp            | 1  |    |    |    |      |     |    | 1  |       |
| Depth (in feet)                    | 25 | 25 | 25 | 25 | 25   | 35  | 48 | 50 | 50    |
| Oil                                |    |    |    |    |      |     |    |    | pres. |

|                                    |          |    |    | Tr | anse | ct I | I  |      |      |
|------------------------------------|----------|----|----|----|------|------|----|------|------|
| ANIMALS                            | 1        | 2  | 3  | 4  | 5    | 6    | 7  | 8    | 9    |
| Coelenterata<br>Cerianthid (large) |          |    | _1 | 1  | 1    | 1    |    | 1    |      |
| Stylatula sp. (sea pen)            |          | 1  |    |    |      | 1    |    |      |      |
| Mollusca<br>Panope sp. (clam)      |          |    |    | 5  |      | 4    | 2  | 11   |      |
| Depth                              | 50       | 50 | 50 | 50 | 50   | 50   | 50 | 50   | 50   |
| Oil                                |          |    |    |    |      |      |    | pres | ent* |
| Miscellaneous (dead fish           | <b>)</b> |    |    |    |      |      | x  |      |      |

|                                    |      |    | <u> </u> | Tr | anse  | ct I | II    |    |            |
|------------------------------------|------|----|----------|----|-------|------|-------|----|------------|
| ANIMALS                            | 1    | 2  | 3        | 4  | 5     | 6    | 7     | 8  | <u> </u>   |
| Coelenterata<br>Cerianthid (large) | . 4  | 10 |          | 5  | 5     | 4    | 2_    | _2 | 10         |
| Stylatula sp. (sea pen)            | 3    | 4  |          | 3  |       | 4    |       |    | <u></u>    |
| Mollusca                           |      |    |          |    |       |      |       |    |            |
| Hermissenda sp. (nudibr            | anch | 1  | 1        |    | - 20- | 10   | 10    | 10 | -ς         |
| Panope sp. (clam)                  | 20   | 15 | 18       | 10 | 20    | 10   | ±0    | ÷  |            |
| Depth                              | 15   | 15 | 15       | 15 | 15_   | 30   | 35    | 35 | 40         |
| Oil                                |      |    |          |    |       |      | pres. |    |            |
| Other (reef present)               |      |    | x        |    |       | L    |       |    | . <u> </u> |

\* Transect line did not go into area under barge where oil pool had previously been located.

|                                                  |    |       |    | Tran     | sect       | = I |    |          |    |
|--------------------------------------------------|----|-------|----|----------|------------|-----|----|----------|----|
| SPECIES                                          | 1  | 2     | 3  | 4        | 5          | 6   | 7  | 8        | 9  |
| Coelenterata                                     |    |       |    |          |            |     |    |          |    |
| Cerianthid (large)                               | 1  | 3     | 5  | 7        | 5          | 2   | 3  | 1        | 0  |
| Cerianthid (small)                               | 0  | 2     | 1  | 0        | 35         | 0   | 0  | 0        | 0  |
| Stylatula sp. (sea pen)                          | 0  | 2     | 1  | 1        | 0          | 0   | 0  | 0        | 0  |
| Mollusca<br>Panope sp. (clam)<br>Hermissenda sp. | 5  | 5     | 10 | 15       | 10         | 0   | 0  | 0        | 0  |
| (nutification)                                   |    | · · · |    | <u> </u> | - <u> </u> | Ĕ.  |    | <b>—</b> |    |
| Echinodermata<br>Pisaster brevispinus            | 0  | 1     | o  | 0        | 0          | 0   | 0  | 0        | 0  |
| Oil                                              | 0  | 0     | 0  | 0        | 0          | L   | L  | м        | м  |
| Depth                                            | 25 | 25    | 25 | 25       | 25         | 45  | 45 | 45       | 50 |

# Table 46. Animals found along the <u>Sansinena</u> Transect lines. July 25, 1977.

|                                    | Transect II |    |    |    |    |    |    |    |    |
|------------------------------------|-------------|----|----|----|----|----|----|----|----|
| SPECIES                            | 1           | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  |
| Coelenterata<br>Cerianthid (large) | 0           | 1  | 0  | 0  | 1  | 1  | 0  | 0  | 0  |
| Mollusca<br>Panope sp. (clam)      | 0           | 0  | 9  | 0  | 4  | 2  | 2  | o  | 0  |
| Oil                                | 0           | 0  | 0  | 0  | 0  | 0  | L  | м  | н  |
| Depth                              | 50          | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 |

L = light amount of oil M = medium amount of oilH = heavy amount of oil Table 46 (Continued)

ł,

j.

: !

and the second 
A 11718 -

•

|                                                                                |    |    |        | Tran | sect | 111    |         |        |        |
|--------------------------------------------------------------------------------|----|----|--------|------|------|--------|---------|--------|--------|
| SPECIES                                                                        | 1  | 2  | 3      | 4    | 5    | 6      | 7       | 8      | 9      |
| Coelenterata                                                                   |    |    |        |      |      |        |         |        |        |
| Cerianthid (large)                                                             | 1  | 5  | 3      | 0    | 0    | 2      | 1       | 4      | 6      |
| Cerianthid (small)                                                             | 0  | 2  | 1      | 1    | 0    | 0      | 11      | 2      | 0      |
| Stylatula sp. (sea pen)                                                        | 1  | 0  | 0      | 0    | 0    | 0      | 1       | 1      | 2      |
|                                                                                | 1  | 0  | 3      | 0    | 0    | 1      | 0       | 0      | 0      |
| Mollusca<br><i>Panope</i> sp. (clam)<br><i>Hermissenda</i> sp.<br>(nudibranch) | 3  | 3  | 5<br>0 | 0    | 5    | 0<br>0 | 10<br>0 | 5<br>0 | 0<br>0 |
| 011                                                                            | L  | L  | 0      | 0    | 0    | 0      | 0       | D      | 0      |
| Depth                                                                          | 25 | 25 | 20     | 20   | 35   | 35     | 35      | 35     | 35     |

L = light amount of oil M = medium amount of oil H = heavy amount of oil

|                               |    |    | l  | 'rar | ised | ct 1 | I  |    |    |
|-------------------------------|----|----|----|------|------|------|----|----|----|
| SPECIES                       | 1  | 2  | 3  | 4    | 5    | 6    | 7  | 8  | 9  |
| COELENTERATA                  | Ī  |    |    |      |      |      | 1  |    | 1  |
| Cerianthid, large             | 2  | 1  | 2  | 3    | 2    | 4    | 1  |    |    |
| Cerianthid, small             |    |    | _1 |      | 1    | 3    | 1  | 1  | T  |
| Stylatula sp. (sea pen)       | 1  | 2  | 1  | 1    | 1    | [    | 1  |    |    |
| Virgularia sp. (sea pen)      | ŀ  |    |    |      | 1    |      |    |    |    |
| MOLLUSCA<br>Panope sp. (clam) | 45 | 5  |    | 7    | 5    |      |    |    |    |
| Nudibranch, white             |    |    |    |      |      |      |    |    |    |
| ARTHROPODA<br>Cancer sp.      |    |    |    |      | 2    |      |    |    |    |
| 011                           |    |    |    |      |      |      | L  | VL | L  |
| Depth ( in feet )             | 25 | 25 | 25 | 27   | 29   | 45   | 45 | 50 | 50 |

| Table 47. | Animals found along | the | Sansinena | transect | lines. |
|-----------|---------------------|-----|-----------|----------|--------|
|           | August 26, 1977.    |     |           |          |        |

| 0000000                           |          | _   |    | [rar | ised     | t I | ÍÍ |    |    |
|-----------------------------------|----------|-----|----|------|----------|-----|----|----|----|
| SPECIES                           | 1        | 2   | 3  | 4    | 5        | 6   | 7  | 8  | 9  |
| COBLENTERATA<br>Cerianthid, large |          |     | 4  |      |          | 2   | 1  |    |    |
| Certanchiu, small                 | <u> </u> | ļ., |    |      | <u> </u> | 1   | 4  |    |    |
| MOLLUSCA<br>Panope sp. (clam)     |          | 2   | 5  | 3    |          | 1   |    |    |    |
| ARTHROPODA<br>Cancer sp.          |          |     |    | 1    |          |     |    |    |    |
| 011                               |          |     |    |      |          |     |    | н  | н  |
| Depth (in feet)                   | 53       | 50  | 50 | 50   | 50       | 50  | 50 | 50 | 50 |

| SPRCTRC                                                                  |    |          |          | Frar | nsec | t. | III |    |    |
|--------------------------------------------------------------------------|----|----------|----------|------|------|----|-----|----|----|
| OTHERS                                                                   | 1  | 2        | 3        | 4    | 5    | 6  | 7   | 8  | 9  |
| COELENTERATA<br>Cerianthid, large                                        | 1  | 3        | 2        | 3    | 3    | 7  | 8   | 5  | 2  |
| Cerlanthid, small<br>Stylatula sp. (sea pen)<br>Virgularia sp. (sea pen) | 2  | 7        | 3        | 2    |      |    | 2   |    | 14 |
| MOLLUSCA<br>Panope sp. (clam)                                            |    | <b>†</b> | <b>+</b> |      |      |    |     |    |    |
| Depth (in feet)                                                          | 20 | 20       | 20       | 20   | 20   | 25 | 35  | 30 | 30 |

L = light; VL = very light; H = heavy.

-----Station Transect I SPECIES 1 2 3 4 5 6 8 9 ----7 COELENTERATA Cerianthid, large 2 3 3 15 3 Cerianthid, small 2 2 1 Stylatula sp. (sea pen) 3 3 5 1 Virgularia sp. (sea pen) l 3 MOLLUSCA Hermissenda crassicornis 2 3 2 1 Panope generosa 20 5 5 10 5 ARTHROPODA Cancer sp. 1 OIL  $\mathbf{L}$  $\mathbf{L}$ Μ Depth ( in feet) 25 25 25 28 30 35 50 50 50

Table 48. Animals found along the <u>Sansinena</u> transect lines. September 29, 1977.

| Station                              |    |    |    | TI | ans | ect      | : II |    |           |
|--------------------------------------|----|----|----|----|-----|----------|------|----|-----------|
| SPECIES                              | 1  | 2  | 3  | 4  | 5   | 6        | 7    | 8  | 9         |
| COELENTERATA<br>Cerianthid, large    | 3  | 3  | 2  | Ī  |     | 2        | 2    | 2  | <br> <br> |
| Cerianthid, small                    |    |    | 1  | 1  | 1   | <u> </u> |      |    |           |
| MOLLUSCA<br>Hermissenda crassicornis |    | •  | 2  | 3  |     |          |      | 5  |           |
| Panope generosa                      | 3  | 10 | 10 |    | 20  | 30       | 10   | 10 |           |
| OIL                                  |    |    |    |    |     |          | M    | Н  | н         |
| Depth (in feet)                      | 52 | 52 | 52 | 52 | 52  | 52       | 52   | 52 | 52        |

| Station                              |    |     |    | Tı       | ans      | ect | . II | I  |            |
|--------------------------------------|----|-----|----|----------|----------|-----|------|----|------------|
| SPECIES                              |    | 2   | 3  | 4        | 5        | 6   | 7    | 8  | 9          |
| COELENTERATA                         | ľ  |     |    |          |          |     |      |    |            |
| Cerlanthid, Large                    | 6  | 4   | 4  | <u> </u> | 10       | 6   | 8    | 10 | 3          |
| Cerianthid, small                    | iL | ] 1 | 2  | 10       | 5        | 5   |      | 5  |            |
| Virgularia sp. (sea pen)             |    |     | Γ  | 1        | 1        |     | 1    | 1  |            |
| MOLLUSCA<br>Hermissenda crassicornis | 7  | 10  | 15 | 10       |          | 20  |      | 10 |            |
| Panope generosa                      | 2  | 3   | 3  | <u> </u> | <u>†</u> |     | 3    |    | <u>+</u> . |
| OIL                                  |    |     |    |          |          |     | 1    |    | L          |
| Depth                                | 20 | 20  | 20 | 20       | 20       | 27  | 40   | 46 | 40         |

L = light amount of oil M = medium amount of oilH = heavy amount of oil





## LITERATURE CITED

- Allan Hancock Foundation. 1976. Environmental investigations and analyses, Los Angeles-Long Beach Harbors. Final Report to the U.S. Army Corps of Engineers, Los Angeles District. Harbors Environmental Projects, Univ. of Southern Calif. 773 p.
- American Public Health Association. 1971. Standard Methods for Examination of Water and Waste Water. 13th edition. New York.
- American Society for Microbiology, 1957. Manual of Microbiological Methods. McGraw Hill. New York.
- Bray, J.R. and J.T. Curtis. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27:325-349.
- Clifford, H.T. and W. Stephenson. 1975. An Introduction to Numerical Classification. Academic Press. San Francisco. 229 p.
- Conover, R.J. 1971. Some relationships between zooplankton and Bunker C oil in Chedabucto Bay following the wreck of the ship ARROW. J. Fish. Res. Bd. Con. 28:1327-1330.
- Juge, D.M. and G.C. Greist. 1975. A modification of BOD methods for use in the marine environment. <u>In</u> Marine Studies of San Pedro Bay, California. Part 8. Allan Hancock Foundation and Sea Grant Program, Univ. Southern Calif. 46-55 (Soule, D.F. and M. Oguri, eds.).
- Kikkawa, J. 1968. Ecological association of bird species and habitats in eastern Australia: Similarity analysis. J. Anim. Ecol., 37:143-145.
- Lance, G.N., and W.T. Williams. 1967. A general theory of classificatory sorting strategies. I. Hierarchial systems. Computer J. 9:373-380.
- Millepore Corporation. 1972. Biological Analysis of Water and Wastewater. Manual AM 302.
- Neilson, E.S. 1952. The use of radioactive carbon for measuring organic production in the sea. Kapp. Cons. Explor. Mer. 144:92-95.
- Oguri, M. 1976. Primary productivity, chlorophyll *a*, and assimilation ratios in Los Angeles-Long Beach Harbors, 1973 and 1974. <u>In</u> Marine Studies of San Pedro Bay, California. Part 11. Harbors Environ. Proj. Univ. Southern Calif. 315-325.
- Reish, D.J. 1959. An ecological study of pollution in Los Angeles-Long Beach Harbors, California. Allan Hancock Found. Occas. Paper 22:1-119.

:

Reish, D.J. 1964. Studies on the Mytilus edulis community in Alamitos Bay, California. I. Development and destruction of the community. Veliger 6(3):124-131.

- Reish, D.J. 1977. The development of the marine communities in Marina del Rey, California. <u>In</u> Soule, D.F. and M. Oguri, eds. The marine ecology of Marina del Rey Harbor, California. University of Southern California: Allan Hancock Foundation and Office of Sea Grant Programs. USC-SG-2-77:93-106.
- Ricketts, E.F., J. Calvin, and J. Hedgpeth. 1969. Between Pacific tides. Stanford: Stanford Univ. Press. 614 pp.
- Smith, R.W. 1976. Numerical analysis of ecological survey data. Ph.D. Dissertation, Univ. Southern Calif. 401 p.

. 1977. EAP, Ecological Analysis Package. User's Manual. Harbors Environmental Projects, Allan Hancock Foundation, Univ. Southern Calif.

Soule, D.F. and M. Oguri (eds.). 1976. Potential effects of dredging on the biota of outer Los Angeles Harbor. Toxicity, bioassay and recolonization studies. In Marine Studies of San Pedro Bay, Part 11. Univ. Southern Calif. 325 p.

. 1978. The impact of the <u>Sansinena</u> incident on the marine environment. Proc. Keystone Conference, Amer. Instit. Biol. Sci., in press.

- Soule, D.F. and J.D. Soule. 1971. Preliminary report on techniques for marine monitoring systems. Sea Grant Tech. Note. (USC-SG-IT-71), Univ. Southern Calif. 5 p.
- Straughan, D. 1975. Intertidal sandy beach macrofauna at Los Angeles-Long Beach Harbor. Part 2. Inner and outer Cabrillo beaches. March 1973-July 1974. In Soule, D.F. and M. Oguri, eds. Marine studies of San Pedro Bay, California. Part 8. Environmental biology. Univ. of So. Calif.: Allan Hancock Foundation, Harbors Environmental Projects and Office of Sea Grant Programs. USC-SG-3-75:89-107.
- Straughan, D. 1976. Sublethal effects of natural chronic exposure to petroleum in the marine environment. Am. Petroleum Inst. Publ. 4280. 119 pp.
- Straughan, D. and M.M. Patterson. 1975. Intertidal sandy beach macrofauna at Los Angeles-Long Beach Harbor. Part 1. Inner and outer Cabrillo beaches. September 1971-September 1972. In Soule, D.F. and M. Oguri, eds. Marine studies of San Pedro Bay, California. Part 8: Environmental biology. Univ. of So. Calif.: Allan Hancock Foundation, Harbors Environmental Projects and Office of Sea Grant Programs. USC-SG-3-75:75-88.
- Strickland, J.D.H. and T.R. Parsons. 1968. A practical handbook of seawater analysis. Fish. Res. Bd. Canada, Bull. 167. 311 p.

United States Coast Guard. 20 May 1977. Oil spilled as a result of the tankship <u>Sansinena</u> explosion. Communication 16450/SAN.

Zolnay, A., N.G. Maynard and C.D. Gebelein. 1977. Biogenic hydrocarbons in intertidal communities. Proc. 1977 Oil Spill Conference. Amer. Petrol. Instit., p. 173-178.

## IV. OTHER EFFECTS OF TANKER INCIDENTS

A. PRELIMINARY REPORT ON THE PHYSICAL AND SENSORY EFFECTS

OF THE EXPLOSION OF THE OIL TANKER SANSINENA

by

John W. McDonald Department of Geography University of Southern California

On December 17, 1976 an explosion destroyed the Liberian registered tanker, <u>Sansinena</u>, at its berth in Los Angeles Harbor. Property damage was incurred in the residential areas adjacent to the explosion and the blast was heard over a much larger area of southern California. A two-part survey was undertaken to ascertain the size and shape of the area sustaining physical damage and the size and shape of the area over which the blast had been perceived.

A house-to-house survey of physical damage was conducted by 120 students from three geography classes from the University of Southern California. This survey covered a large part of San Pedro as well as transects in Wilmington and Long Beach. Students also observed and recorded on questionnaire forms any visible evidence of damage. They then interviewed the occupants, asking about structural damage, broken glass, interruption of utilities and oil aerosol fallout. They also asked each interviewee his recollection as to what he had thought had happened at the time of the explosion. Over 2,600 buildings were surveyed in this manner.

The second part of the survey took the form of a mail-back questionnaire sent through the campus mail service to all employees of the University of Southern California. Each addressee was asked if he had seen, heard, or felt the explosion and what his perception of the nature of the explosion had been. Approximately 1,200 replies were received.

The information collected was transferred to punch cards for computer analysis. The analyses being carried out include computer generated 2- and 3-dimensional maps showing patterns of damage, perception of the incident, and the influence of distance and land form on these patterns.

The first data item to be tabulated and analyzed was the response given in the house-to-house survey to the question, "Did your home or building sustain any damage in the explosion?". Response to this question are tallied in Table 1. In this table the column headed "no response" includes buildings where no one was at home, persons who refused to answer, and persons who claimed to be unable to speak English.

The accompanying computer-generated maps are a results of this on-going analysis. These maps depict in three different forms, each giving a different perspective, the responses to the question on damage to buildings.

The first map, drawn by a computer plotter, shows the responses grouped within the boundaries of census tract block groups. Inasmuch as census boundaries usually are city streets, this map is useful in identifying where damage occurred (Figure 1).

The second map, produced in typescript by the computer line printer, is a contour or isoplethic map based on the centroids of census tract block groups. The interpolative algorithm used in the production of this map is useful in showing trends or patterns (Figure 2).

The third map, also drawn by the computer's pen plotter, is a three dimensional block diagram or model of the same information.

The factor illustrated on these three maps is the <u>number</u> of buildings damaged. No attempt was made to assess the <u>severity</u> nor the dollar value of the damage. Nonetheless, in spite of giving all reported damage equal weight, the number of buildings damaged can be seen to be a valid measure of the effect of the explosion over an area. The maps, especially the contour and the three dimensional, dramatically demonstrate the effects of the explosion diminishing in a radial pattern with distance from the blast, especially to the west along the Palos Verdes Hills above San Pedro.

Data on the number of buildings damaged at Fort MacArthur, Ports of Call, and the Coast Guard station were not available when these maps were compiled, since they did not respond to mailed surveys. However, examination of a topographic map of the area (Figure 4) shows that the damage was related to elevation contours. Toward the north, where elevations were lower, less damage was noted than was the case toward the west. There, the higher elevations are delineated by damage even though the points were approximately the same distance from the center of the explosion as the less damaged lower areas.

| Census Tract/<br>Elock Group | Number of<br>Buildings<br>Damaged | Number of<br>Buildings<br>Not Damaged | No Response |
|------------------------------|-----------------------------------|---------------------------------------|-------------|
| 29621                        | 2                                 | ~                                     |             |
| 29622                        | 2                                 | 0                                     | Q           |
| 29624                        | 5                                 | <b>)</b>                              | 0           |
| 29625                        | 22                                | 1)                                    | 2           |
| 29661                        | 17                                | 28                                    | 1           |
| 29662                        | 9                                 | 20                                    | 41          |
| 29663                        | <u>أ</u>                          | 2                                     | 0           |
| 29664                        | 3                                 | 21                                    | 1           |
| 29671                        | 7                                 | r<br>ka                               | 5           |
| 29672                        | 6                                 | 30                                    | 1           |
| 29681                        | 2                                 | 2<br>8                                | 6           |
| 29682                        | 10                                | <b>č</b>                              | 17          |
| 29683                        | 0                                 | ر ر<br>۱                              | 30          |
| 29691                        | ŏ                                 | 4                                     | 3           |
| 29692                        | 2                                 | 0                                     | Ţ           |
| 29693                        | 16                                | 21                                    | 5           |
| 29694                        | <u></u>                           | 24                                    | 25          |
| 29695                        | 3                                 | 10                                    | 42          |
| 29 <b>7</b> 11               | ó                                 | 70                                    | 17          |
| 29712                        | 30                                | 27                                    | 0           |
| 2 <b>97</b> 13               | 10                                | 0                                     | 33          |
| 29714                        | 46                                | 26                                    | 2           |
| 29715                        | <u>h6</u>                         | 25                                    | 53          |
| <b>297</b> 21                | 52                                | 5                                     | 10          |
| 29722                        | 7                                 | 16                                    | 62          |
| 29723                        | 16                                | 28                                    | 11          |
| 29724                        | <u>luk</u>                        | 85                                    | 50          |
| 29725                        | 12                                | 10                                    | 52          |
| 29731                        | 2                                 | <b>,</b>                              | 00          |
| 29732                        | 5                                 | 25                                    | <b>ر</b>    |
| <b>2975</b> 1                | 17                                | 26                                    | 43          |
| 29752                        | 12                                | <u>),6</u>                            | 1/<br>1     |
| <b>2975</b> 3                | 12                                | રો,                                   | 4           |
| 29761                        | 72                                | 10                                    | 2           |
| 29762                        | 7                                 | Ť,                                    | 24          |
| 29763                        | 32                                | 2                                     | 0           |
| 29764                        | รีร                               | 1).                                   | 47          |
| 2 <b>97</b> 65               | 15                                | 17                                    | 92          |
|                              | -*                                | <b>▲</b> I                            | 55          |

Table 1. Damage Survey of the Sansinena Explosion.



FIGURE 1





•



Figure 4. Excerpt, USGS Topographic Map of San Pedro Quadrangle.

IV.B. A REVIEW OF THE EFFECTS OF SPILLED BUNKER C FUEL ON MARINE ENVIRONMENTS

by

Mary K. Wicksten Harbors Environmental Projects University of Southern California

FATE OF THE COMPONENTS OF THE OIL IN SEA WATER

The most abundant components of Bunker C fuel oil are alkyl phenols, indoles, and naphthalenes (Winters and Parker, 1977). Upon exposure to sea water, highly volatile fractions of the oil escape into the atmosphere, while insoluble residues may form floating masses or hard, pavement-like surfaces on sediments (Guard, Hunter and DiSalvo, 1975; Thomas, 1973).

Guard, et al.(1975) found that about 100 mg of each liter of oil (10%) is estimated to leach into sea water. The major components of seawater extracts of Bunker C fuel oil are acetophenone, naphthalene, phenol, o- and p-cresol. Methylnaphthalene and xylenols are present in minor amounts. Winters and Parker (1977) reported that over 80% of the naphthalenes are lost during the first 12 hours after exposure. Most of the alkyl benzenes, naphthalenes, biphenyls, and hydrocarbons will evaporate before reaching less well mixed water. The remaining fractions, however, can be carried for many miles by ocean currents and can continue to mix with ocean waters during that time (Guard, et al., 1975).

## EFFECTS IN ROCKY HABITATS

There have been two major spills of Bunker C fuel oil in areas with rocky habitats: in February, 1970, at Chedabucto Bay, Nova Scotia (Thomas, 1973) and in January, 1971, in San Francisco Bay, California (Chan, 1977). In both areas the oil washed ashore and coated intertidal rocks. The oil deposited on the rocks killed barnacles (*Balanus* spp.) by suffocation. Major die-offs of the striped shore crab *Pachygrapsus* crassipes were reported in San Francisco Bay. In Chedabucto Bay, the brown alga *Fucus serratus* was broken off the rocks and cast ashore after being coated with oil. *Fucus spiralis* was eliminated entirely in areas where oiling was severe. Populations of the snail *Littorina obtusata*, which inhabits *F. serratus*, declined.

Sublethal effects of extracts of Bunker C fuel oil have been discovered in two rocky intertidal organisms. At concentrations of more than 50%, number six bunker oil is toxic to fertilization of eggs of the sea urchin, *Strongylocentrotus purpuratus*. Cleavage stages of the fertilized eggs are even more sensitive to the oil (Allen, 1971). Periwinkle snails (*Littorina littorea*) increase their rates of crawling and respiration in the presence of Bunker C oil (Hargrave, 1973).

Recovery of oiled rocky intertidal areas appears to be rapid except in sheltered areas. Within three years after the spill in San Francisco Bay, Chan (1977) found that recruitment had doubled the mean population of invertebrates found in study areas immediately after the spill. No lingering effects of the oil were observed except a continued low population of shore crabs. Exposure to crude oils has been found to inhibit chemoreception, feeding responses, and mating activities in these crabs (Kittredge, Takahashi, and Sarinana, 1975).

In Chedabucto Bay, the oil on the rocks declined rapidly during the winter of 1970-71, probably due to rough weather and scouring by ice. The remaining oil on the rocks, however, formed a coating which would warm up, soften, and cause re-oiling.

Recolonization of oiled rocky areas in Chedabucto Bay proceeded rapidly. The snails *Littorina saxatilis*, *Littorina littorea*, and *Littorina obtusata* became abundant. The brown alga *Ascophyllum nodosum* appeared not to have been affected by the oil, perhaps due to a thick coating of mucilage which repelled the oil. *Fucus spiralis*, however, did not settle again in oiled areas (Thomas, 1973).

## EFFECTS IN SAND, MUD, AND SALT MARSHES

Bunker C fuel oil was spilled on beaches, in lagoons, and in salt marshes in Chedabucto Bay in 1970 (Thomas, 1973). Some Bunker C oil was spilled in Chesapeake Bay in February, 1976, although most of that spill consisted of number six fuel oil (Westree, 1977; Hershner and Moore, 1977). Oil from the spill in San Francisco Bay drifted north to contaminate Stinson Beach (Chan, 1977).

Contamination by Bunker C fuel oil had worse effects in areas of soft sediments in Chedabucto Bay than in rocky areas. Thomas (1973) noted that lagoons acted as "oil traps." Salt marsh grass (*Spartina alterniflora*) was eliminated in oiled areas. The edible soft-shell clam *Mya arenaria* was killed by oiling or forced from its burrow and eaten by predators. Even when these clams were moved to clean sediment, they ejected visible oil for at least one month.

Vandermeulen (1975) and Vandermeulen and Keizer (1977) found that the sediments of the beaches of Chedabucto Bay acted as a sink for stranded oil. Persistence of the oil in these sediments was estimated at 150 years. Because of this long residence, burrowing and rooted organisms would be subjected continuously to high levels of petroleum hydrocarbons.

Significant levels of contamination were found in the eel grass Zostera marina in Chedabucto Bay. Hydrocarbons remained fairly constant in the gut-hepatopancreas-foot complex and adductor muscles of bivalve mollusks. No Bunker C contamination, however, was detected in the "common mussel" (probably Mytilus edulis) (Vandermeulen, 1975; Vandermeulen and Keizer, 1977). In Chesapeake Bay, fuel oil was buried to a depth of 10 cm in beaches. Tidal action re-exposed this oil from time to time, causing new contamination. Oil smothered benthic organisms, including oysters; coated marsh grass (*Spartina* sp.), and tainted edible oysters, clams and crabs. Ribbed mussels (*Modiolus demissus*) died as temperatures rose in contaminated areas in April and May (Roland, Moore, and Bellanca, 1977; Hershner and Moore, 1977).

The spill in Chesapeake Bay occurred during the winter, when much of the biota of the marshes is inactive. After cutting and removal of oiled grasses, a greater proportion of the new stems from remaining rhizomes flowered and produced seed heads than in areas without oil. The snail *Littorina irrorata* reinvaded the new patches of salt grass (Hershner and Moore, 1977).

!

i

i

At Stinson Beach ( California), slight gains occurred in the populations of the sand worm *Nephthys* sp. and the mole crab *Emerita analoga* by 1974. However, neither population regained its numbers prior to the oil spill (Chan, 1977).

#### EFFECTS ON SUBTIDAL AREAS

Thomas (1973) reported that oil in subtidal sediments in lagoons in Chedabucto Bay was released on disturbance. Four species of shallowwater demersal fish were found dead on the beach in an area where chemicals were used in the clean-up of oil in the bay. Divers in San Francisco Bay saw iridescent films, heavy patches of oil, and soft black globules which floated about one foot below the surface (White, 1971).

## EFFECTS ON BIRDS

In both the San Francisco Bay spill and the Chesapeake Bay spill, grebes were among the birds suffering highest mortalities (Anonymous, 1971; Roland, Moore, and Bellanca, 1977). Sea ducks (scoters and oldsquaws), loons, murres, and cormorants died by the hundreds. Off San Francisco, immature murres, which rest on water at night, suffered worse damage from the spread of the oil at night than cormorants, which roost on rocks at night.

Bunker C oil consumed by birds has a short but lethal effect on their eggs. Japanese quail, chickens, and Canada geese fed 200 mg of Bunker C fuel oil laid eggs with grossly abnormal yolk on the following day. After four days, however, the egg-laying habits of the birds returned to normal (Anonymous, 1977).

Bourne (1975) found that damage to oiled birds is related both to the type of oil and the temperature. The worst damage is caused by fresh, fluid oils which clog plumage and break down its insulating capacity. Fuel oils, which are liquid until dispersed, cause more harm than crude oils, which form "mousse" or tar balls. At higher temperatures, refined oils tend to disappear entirely and crude oils lose their volatile and soluble toxic components, becoming biologically inert solids. At lower temperatures, however, these processes are slowed or halted, impairing the ability of an oiled bird to rid itself of its

CLEAN TECHNIQUES FOR SPILLS OF BUNKER C FUEL OIL

Three methods were used with some success in the Chesapeake Bay spill: scooping up pools of heavy oil or sand and oil with front-end loaders, cutting and removal of oiled marsh grass, and spraying rocks, piers, and groins with a high pressure water hose. Booms failed to contain the spill due to waves, wind, and tidal action. Vacuum trucks were ineffective due to the viscosity of the oil (Roland, Moore, and Bellanca, 1977).

Westree (1977) noted that the mixing of oil with the soil during cutting of salt grass caused additional contamination. The oil presumably becomes a long-term pollutant, contaminating rhizomes and burrowing organisms for years in the future.

After the spill in Chesapeake Bay, return of the recovered oil to dealers was found to be too costly. Some of the oil was used for roads. Most of the rest was put into steel drums and was burned. Although this procedure removed the oil, it produced a cloud of objectionable black smoke (Wise and Brunk, 1977).

Some of the beaches in Chedabucto Bay were cleaned with chemical dispersal agents. However, due to the isolation and cover of ice in many areas, most of the oil was left untouched (Thomas, 1973).

In San Francisco Bay, straw was spread on oil on land and water. After the straw became soaked, it was gathered and put into garbage dumps or pits to decompose. Plastic booms, vacuum hoses, and skimmers were used to collect some of the oil for shipment to refineries. Shredded styrofoam, spread on the oil to collect it, proved difficult to gather (White, 1971).

Oiled birds in San Francisco Bay were collected by volunteers, cleaned with a bath of mineral oil, dried in a mixture of flour and corn meal, and kept in a warm place for observation. The birds were fed a mixture of water, fish, antibiotics, and vitamin  $B_1$ . Despite these precautions, the rate of survival of the treated birds was extremely low (White, 1971; Anonymous, 1971).

LITERATURE CITED

- Allen, H. 1971. Effects of petroleum fractions on the early development of a sea urchin. Mar. Poll. Bull. 2(9):138-140.
- Anonymous. 1971. Treatment of oiled birds in California. Mar. Poll. Bull. 2(9):132.
- Anonymous. 1977. Oil pollution detected in birds' eggs. Mar. Poll. Bull. 8(8):173.
- Bourne, W.R.P. 1975. Temperature and the seasonal and geographical occurrence of oiled birds on west European beaches. Mar. Poll. Bull.
- Chan, G.L. 1977. The five-year recruitment of marine life after the 1971 San Francisco oil spill. Proc. 1977 Oil Spill Conf. Amer. Petr. Inst. Publ. No. 4284. pp. 543-545.
- Guard, H.E., L. Hunter, and L.H. DiSalvo. 1975. Identification and potential biological effects of the major components in the seawater extract of a bunker fuel. Bull. Environmental Contamination and Toxicology 14(4):395-400.
- Hargrave, B.T. 1973. Crawling and respiration as indices of sublethal effects of oil and a dispersant on an intertidal snail Littorina littorea. J. Fish. Res. Bd. Canada 30(12):1789-1792.
- Hershner, C., and K. Moore. 1977. Effects of the Chesapeake Bay oil spill on salt marshes of the lower bay. Proc. 1977 Oil Spill Conf. Amer. Petr. Inst. Publ. No. 4284. pp. 529-533.
- Kittredge, J.S., F. T. Takahashi, and M.A. Bellanca. 1977. Bioassays indicative of some sublethal effects of oil pollution. Gov't. R eports Announcements 75(22):46.
- Roland, J.V., G.E. Moore, and M.A. Bellanca. 1977. The Chesapeake Bay oil spill--February 2, 1976: A case history. Proc. 1977 Oil Spill Conf. Amer. Petr. Inst. Publ. no. 4284. pp. 523-527.
- Thomas, M. 1973. Effects of Bunker C oil on intertidal and lagoonal biota in Chedabucto Bay, Nova Scotia. J. Fish. Res. Bd. Canada 30(1):83-90.
- Vandermeulen, J.H. 1975. 1970 Arrow Bunker C in 1974: Re-entry of stranded Bunker C oil into the marine environment. Record of Proc., 13th Pac. Sci. Congress. Vol. 1, pp. 85-86.
- Vandermeulen, J.H., and P.D. Keizer. 1977. Persistence of non-alkaline components of Bunker C oil in beach sediments of Chedabucto Bay, and lack of their metabolism by mollusks. Proc. 1977 Oil Spill Conf. Amer. Petr. Inst. Publ. no. 4284. pp. 469-473.
- Westree, B. 1977. Biological criteria for the selection of cleanup techniques in salt marshes. Proc. 1977 Oil Spill Conf. Amer. Petr. Inst. Publ. no. 4284. pp. 231-235.
- White, P.T. 1971. Barehanded battle to cleanse the bay. Nat. Geographic 139(6):866-881.
- Winters, K., and P.L. Parker. 1977. Water soluble components of crude oils, fuel oils, and used crank-case oils. Proc. 1977 Oil Spill Conf. Amer. Petr. Inst. Publ. no. 4284. pp. 579-581.
- Wise, N., and P.A. Brunk. 1977. Black oil idsposal techniques. Proc. 1977 Oil Spill Conf. Amer. Petr. Inst. Publ. No. 4284. pp. 277-279.

MARINE STUDIES OF SAN PEDRO BAY, CALIFORNIA. PART 15. DECEMBER 1978

OIL, FISHERIES, AND THE HEALTH OF THE ECOSYSTEM: A REVIEW

by

K. Sherman and J. B. Pearce

Narragansett Laboratory U.S. Department of Commerce National Oceanic and Atmospheric Administration National Marine Fisheries Service Northeast Fisheries Center Woods Hole, Mass. 02543

ABSTRACT. An overview of the effects of petroleum hydrocarbons in the marine environment on fisheries and on ecosystems is presented. Assessments of damage from major spills are reviewed.

ACKNOWLEDGMENT. This review was adapted from a background report to the Marine Fisheries Advisory Committee (MAFAC) of the National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Department of Commerce.

ł.

## IV. C. OIL, FISHERIES, AND THE HEALTH OF THE ECOSYSTEM

## INTRODUCTION

### Input of Petroleum Hydrocarbons to Marine Waters

Each year 6 million metric tons of petroleum hydrocarbons enter the ocean (Nat. Acad. Sci., 1975). Of this amount 1% is attributable to offshore production, 44% is introduced from municipal and industrial wastes and river and urban runoff, 35% from transport and offloading operations, and 20% from natural seeps and atmospheric fallout (Table 1). Measured against this total, an acute tanker spill represents a relatively small percentage of annual input. The <u>Argo Merchant</u> spill, while spectacular, represented 1% of the total annual input of oil in the marine environment.

#### Damage Assessment Problems

During the next decade the demand for oil products will result in continued spillage and damage to coastal fisheries and their environments. The full impact of this oil on the marine ecosystem is difficult to assess in the absence of coordinated scientific assessment programs. It is clear, however, based on our studies in National Marine Fisheries Service and from a search of the literature, that most damage to fisheries has been in nearshore waters. For the most part, damage has been localized. Depending on the extent of exposure and the type of oil involved, recovery of marine populations to former abundance levels can range from weeks to years. The effects of oil on resource populations on a global scale are not known. Studies are just now being initiated to evaluate the effects of petroleum hydrocarbons and other hazardous substances on the mortality and physiology (e.g., genetics, histopathology, biochemistry) of resource populations on the continental shelves.

Assessments of petroleum effects on marine organisms have been largely restricted to laboratory toxicity experiments on individual species. It is difficult to translate these findings to actual environmental conditions. A more serious problem is the difficulty in extrapolating from the results of short-term studies of an acute spill to the long-term impact on population levels, without adequate baseline information on natural population fluctuations in the vicinity of the spill.

## Oil Effects on Marine Fish and Shellfish

Oil is a complex mixture of hydrocarbons. Its toxicity to marine organisms is roughly proportional to its aromatic content. The olefin compounds present in refined oils combine with other elements (e.g., hydrogen, sulphur, chlorine, oxygen) to produce toxins that can persist in marine organisms for long periods. The extent of damage from oil on marine organisms is dependent on a number of factors including the type of oil, residence time, rate of evaporation, dissolution, and degradation.

The effects of oil on marine organisms based largely on laboratory toxicity studies have recently been summarized by Sindermann (1978):

1. <u>Direct Lethal Toxicity</u>. Soluble aromatic hydrocarbons can be lethal to adults in low concentrations (1-100 ppm), and to the more sensitive larval stages at even lower concentrations (0.1 to 1 ppm).

2. <u>Sublethal Disruption of Physiological or Behavioral Activities</u>. Sublethal effects may occur in adults in the 10-100 ppb range and are varied, depending on the species tested. Larvae can be affected by concentrations as low as 1-10 ppb. Some lethal effects are: inhibition of mating responses, reduced fecundity, chromosomal abnormalities in eggs, abnormal larval development, decreased feeding activities, and interference with neurosecretory responses.

3. Effects of Direct Coating and Ingestion of Oil. Mortality can result from the occlusion of gills or digestive tract, entanglement of appendages, or smothering and asphyxiation of sedentary forms. Sublethal effects induce irritation of mucous membrances, important in respiration.

4. Tainting of Edible Fish and Shellfish. Tainting can result from exposure of fish and shellfish to as little as 1 ppb soluble petroleum components; human detection levels in tissues are 5-550 ppm.

5. Accumulation of Potentially Carcinogenic Polycyclic Aromatic Compounds in Food Chains. Some of the components of crude oil have been determined (in experiments with terrestrial animals) to be carcinogenic. These compounds occur in the marine environment, and can be accumulated and retained in marine animals.

6. <u>Changes in Habitats and Ecosystems</u>. Transient changes in the upper layers of the ocean in the immediate vicinity of oil spills, and longer lasting changes in the bottom sediments and associated benthic animals have been observed. Short-term and long-term changes in predator-prey relationships have also been reported."

### IMPACTS OF MAJOR SPILLS

#### Nearshore Impacts

Greatest damage from a spill of petroleum hydrocarbons in a shallow nearshore environment results from the mixing of petroleum hydrocarbons in the water column, and subsequent penetration in the sediments. This action increases the residence time of the oil. Case histories of oil spills in embayments and other littoral environments describe a wide range of lethal and sublethal effects on fish, benthos, algae, and the disruption of ecosystem stability (Clark and Finley, 1977). In each of the cases reviewed where significant damage was demonstrated, the petroleum hydrocarbons persisted at high levels for days and even weeks in acute releases from wrecked tankers, ruptured pipelines, and leaking storage tanks. Damage in areas where petroleum hydrocarbons penetrate the substrate can persist for several years. For example, Dow et al. (1975) reported a loss, over 3 years of 50 million clams, representing 85% of a stock in the immediate vicinity of a No. 2 fuel oil spill in Searsport, Maine.

#### Buzzards Bay Spill

An instance of severe, but localized damage was reported for a spill of No. 2 fuel oil from a grounded barge in Buzzards Bay, Mass., in 1969. Following the spill, large-scale mortalities of fish, molluscs, and other invertebrates in the tidal and intertidal areas of the wild Harbor area of Buzzards Bay were reported. Later sampling of the area in spring, 1970, revealed massive mortalities of benthic invertebrates. The species composition of the surviving benthos shifted from a typical mixed community to a single species dominance of a pollution indicatorthe polychaete worm, *Capitella capitata*. Within two years of the spill, the area showed some signs of recovery. However, eight years later, at least one sampling location did not reach its normal species assemblage. And in the other sampling locations sublethal chronic effects have been detected in fish and crab populations. The clam flats have not yet been reopened (Sanders, 1977).

#### Chedabucto Bay Spill

A spill of 500,000 gallons of Bunker C fuel oil in 1969 caused severe damage in Chedabucto Bay, Nova Scotia. Approximately 100 kilometers of shoreline were adversely affected. Losses of shellfish, intertidal crustaceans, and attached algae were reported just after the spill. Subsequent monitoring of the area has been continued. It was estimated that 4 to 8 years would be required for recovery of the algal populations. The clam (*Mya arenaria*) populations will require an estimated 10 years to reach half of their former population densities (Vandermeulen, 1977).

#### Amoco Cadiz Spill

Damage information is incomplete at this time on the impact of the <u>Amoco Cadiz</u> spill. However, direct reports from NOAA members of the Spilled Oil Research Team visiting the site report that damage is extensive. The spill is the largest on record. Some 29 million gallons were released and drifted onto the shore of Brittany in late March 1978 when the vessel ruptured. Wave action was responsible for massive infusion of oil into the sediments. Immediate harvesting saved some of the valuable shellfish beds (oysters, mussels). It is unlikely that the area will be free of oil in time for seeding next crop. Massive mortalities of fish, shellfish, algae, subtidal crustaceans, and birds were observed. Oil has moved into several of the large estuaries causing widespread damage to shellfishing areas (J. Robinson, NOAA/ERL, Boulder; Personal Communication).

#### Offshore Impacts

Most studies on the effects of oil on fish and shellfish have been concerned with the onshore or nearshore impacts on littoral organisms (Sanders, 1977). Sublethal effects of crude oil have been described for saithe, *Pollachius virens* (pollock), in the immediate vicinity of a grounded tanker off the Norwegian coast (Grahl-Nielsen <u>et al.</u>, 1976). In experiments where salmon and saithe were exposed to moderate levels of oil (=50 ugms EKOFISK crude oil/liter seawater) both species showed residues of petroleum hydrocarbons within 7 hrs of dosing. Following termination of dosing after 68 days, both species showed naphthaline levels comparable to those existing prior to dosing, indicating that at moderate dosage levels, effects are sublethal and reversible (Brandal <u>et al.</u>, 1976).

Most of the more sensitive egg and larval stages of fish and molluscs are planktonic. They are carried by the tides and currents, lack the ability to avoid oil spill areas, and are subject to largescale mortality from oil, particularly in the surface and near-surface waters. Laboratory studies have shown that crude oil can damage developing fish eggs and cause high mortalities in cod, herring, and capelin embryos (Kühnold, 1969, 1974; Johannessen, 1976). Also, plaice larvae and other species from the Black Sea suffered high mortalities from exposure to crude oil in laboratory experiments at exposures as low as 0.1 ppm (Mironov, 1968, 1969). Aromatic hydrocarbons (e.g. benzene, toluene) are highly toxic to fish larvae. High mortalities and serious sublethal deformities were observed among Pacific herring and northern anchovy dosed with concentrations as low as 5 ppm (Struhsaker et al., 1974). Observations from collections made at sea have shown that zooplankters, particularly copepods, can ingest particles of oil and pass them through the gut without any observable negative effects (Conover, 1971; Parker, 1970). Some species of adult fish have been observed to avoid areas contaminated with oil. Bivalve shellfish

(quahogs, scallops, mussels) are sedentary and have only limited capability to purge themselves externally and internally of large amounts of petroleum hydrocarbons. They suffer significant mortalities in areas where sediments become contaminated with oil (Blumer, et al., 1970; Thomas, 1973, Jeffries and Johnson, 1975). While oil damage has been demonstrated on the continental shelf, based on short-term studies, little is known of the longer-term effects of chronic exposures. Proper assessments of the impact of oil on the continental shelf ecosystem will require the combined effort of extensive sea sampling and experimental support studies.

#### The Argo Merchant Spill

Prior to the <u>Argo Merchant</u> spill in December 1976, no large-scale effort to assess oil-related biological damage had been undertaken in the open waters of the continental shelf off the northeast coast. The investigators participating in the damage assessment studies emphasized the difficulties in attributing changes in the abundance and condition of marine populations to oil as compared to changes from other causes. They recognized that attempts made to isolate oil-induced mortalities or sublethal effects need to be viewed against the background of natural fluctuations and the complexities of multispecies interactions at different trophic levels and over a range of spatial and temporal scales. Moreover, studies to deal with these problems need to be in place and operational long before any acute spill event (Sherman and Busch, 1978). The damage assessment of the <u>Argo</u> spill was based on multidisciplinary studies of both changes in population levels and the physiological conditions of the principal species.

The results were sufficient to indicate that the impact of <u>Argo</u> oil on the populations of Nantucket Shoals was minimal based on the shortterm assessment studies carried out during the 12 months following the spill. Supporting evidence for this conclusion was found in both the population stuides and the physiological effects studies done at the tissue and organism levels for molluscs, fish, birds, zooplankton, and benthic crustaceans. In the histopathological, biochemical and physiological studies the recovery from initial observations of sublethal impact to "normal" conditions was reported for each of the groups of organisms examined, except for marine birds. The bird mortalities caused by oil, however, were few and the impact on bird stocks was not considered significant.

Studies conducted after the spill showed significant impact of <u>Argo</u> oil on the viability of cod and pollock eggs. High mortalities, and malformed embryos attributed to oil-caused cytogenetic damage were collected from the spill zone. Mortalities ranged from 20% to 80% of the embryos collected from the spill zone (Longwell, 1978). The genetic damage observed in developing cod and pollock embryos was localized, and it is unlikely to have had a significant effect on subsequent year-class recruitment of these stocks. Laboratory exposures of cod eggs to watersoluble fractions similar to the <u>Argo</u> No. 6 oil caused sublethal damage (reduced heart-beat rates) at doses of 100 ppb and high mortalities at exposures of 250 ppb (KWhnhold, 1978). Although levels exceeding 250 ppb of oil were detected following the spill, the area of concentration was limited to the immediate vicinity of the <u>Argo</u> wreck and is likely to have affected a relatively small fraction of the Nantucket Shoals cod stocks.

Trophic pathways of <u>Argo</u> oil were observed among the zooplankton and benthos leading directly to important fish stocks. Further comprehensive stomach analyses of fish revealed a minor incidence of "oiled" prey in the digestive tracts of fish. Less than 5% of the fish examined showed any traces of <u>Argo</u> oil in tissue samples collected within 30 days of the spill. On subsequent surveys of bottom fish no <u>Argo</u> oil traces were found in fish, shellfish, or zooplankton samples. Commercial catches and bottom trawl surveys of the spill zone and adjacent areas showed no evidence of reduction in the population densities of the more important fish and shellfish stocks.

The limited short-term impact was attributed to the mitigating ecological circumstances during the spill: (1) biological productivity was at an annual low, (2) no large-scale deposition of oil was observed in the sediments, and (3) the high velocity wind and currents of the season carried the oil, which was largely limited to the surface in vertical distribution, rapidly offshore while it was in the process of evaporation, emulsification, and dissipation in the turbulent upper layers of the water column.

### The EKOFISK-Bravo Blowout

The impact of the Bravo blowout during April, 1977, in the EKOFISK Field off Norway in the North Sea was also minimal. During the 7.5 days that Bravo remained uncapped, 3.8 million gallons of EKOFISK crude oil spread over an area of about 4,000 km<sup>2</sup> in the central North Sea. The Institute of Marine Research at Bergen initiated the first survey of the ecosystem and maintained liaison with vessels of other countries that later joined in the effort (Denmark, Fed. Rep. of Germany, England, Scotland). An attempt was made to sample the area containing oil and also sample adjacent "clean" waters as a control. Sampling was designed to obtain information on changes in abundance and distribution of living resources, record mortalities, monitor water chemistry, study microbial degradation, and monitor hydrographic conditions.

Chemical sampling included collections through the water column at 1 and 5 m and samples of fish and zooplankton that were frozen for petroleum hydrocarbon analysis. In addition, collections were also made to obtain samples of hydrocarbon degrading bacteria. Phytoplankton standing stock and productivity measurements were made to estimate the possible effects of oil on primary productivity. Ichthyoplankton were collected at each of the sampling locations. Fish distributions were tracked with echosounders, and sampled with pelagic and bottom trawls.

From the preliminary results it was apparent that the spring bloom triggering the onset of the growing season for larval fish had not yet developed at the time of the blowout. The water column was thermally mixed and temperatures were lower than normal. Primary production was at a low level. Spawning activity was also minimal. Only a "few" eggs were collected representing five species--whiting, haddock, cod, dab, and plaice. Sand eel larvae and "cat fish" larvae were present in low numbers. The fish biomass was also low as recorded in echograms and verified from pelagic and bottom trawl catches.

After considering the observed low levels of hydrocarbons in the water and the scarcity of commercial-size fish, scientists at the Institute of Marine Research concluded that it was," . . . unlikely that serious effects on the production of fish resources have occurred." Other trophic levels may have been more seriously affected. Evidence was found of an area of reduced primary productivity extending 10 nautical miles eastward of the Bravo platform where "some" dead fish eggs and copepods were found. Additional surveys were later conducted in cooperation with other North Sea countries to investigate the sublethal, chronic effects of the spill on the marine ecosystem. The result of these studies is not yet available.

## Mitigating Biological and Environmental Conditions

To date no comprehensive study has been completed on the effects of oil on the productivity of marine populations of a continental shelf area. The recent Argo Merchant spill along with the Bravo blowout represent case studies for which the long-term effects studies are continuing. Preliminary findings are similar with respect to the minimal impact observed on the mature stages of fish. No evidence of massive mortalities was reported associated with the two spills. However, in both cases sublethal chronic effects were detected. More immediate impact on the ecosystem was observed in the Nantucket Shoals area where Argo Merchant oil was suspected as the cause of cod and pollock embryo mortality. Also, oil was ingested by filter feeding copepods and entered the food web. It is important to note that in both cases the spill event was during a period of low biological productivity. The impacts would have been far more severe had they occurred during the spring and summer, when many of the important fish species spawn. Fish eggs and larvae are sensitive to petroleum hydrocarbons. Mortalities have been reported at levels of 100 ppb and concentrations of up to 250 ppb were found in the vicinity of the Argo wreck.

During the warmer months of the year eddy systems are well developed on the continental shelves. The large volume of oil carried by the supertankers, if released into an eddy system in spring or summer, could cause significant damage to fish eggs and larvae. These sensitive early developmental stages are most abundant during the warmer months in temperate waters. They undergo high natural mortality. Additional losses of the small percentage of survivors caused by toxic petroleum hydrocarbons could seriously impact recruitment, should a spill coincide with the peak hatching and early larval growth period. Contamination of the microzooplankton utilized as food by first-feeding larvae could also prove disastrous to an incoming year-class of fish.

# Ecosystem Impacts

In stressed ecosystems it has been observed that the primary production level remains relatively constant. Significant shifts occur among the species composition of primary and secondary producers. Smaller species gain a competitive advantage for available space and food over the larger species. The species shift results in the accelerated growth of fast-growing, smaller, and generally less desirable species (Steele and Frost, 1977).

#### Experimental Results

Results from recent experiments tend to support the size-selection hypothesis. Several large plastic enclosures placed in deep water off the British Columbia coast were "seeded" with local phytoplankton, microzooplankton, and macrozooplankton populations and dosed with No. 2 fuel oil. Other enclosures were "seeded" with similar populations and used as experimental controls. The plankton populations within the oilcontaminated enclosures shifted after dosing from essentially a largecelled diatom and large copepod fauna to a dominance of microflagellates, and small microzooplankton, including small copepods (Lee & Takahashi, 1976).

Recent studies in large-scale microcosms at the University of Rhode Island have also revealed adverse effects of oil on experimental populations. After the dosing of No. 2 fuel oil at levels of 100-150 ppb, the population numbers of copepods were reduced and inhibited in their physiological responses (S. Vargo, URI, Personal Communication).

The experiments demonstrate the significant adverse impact of oilinduced stress on controlled ecosystems. It is difficult to extrapolate these findings to actual in situ conditions. The results, however, corroborate other observations made recently in the North Sea and off the northeast coast of the U.S.

## The North Sea Ecosystem

It has been suggested that the stress of overfishing and/or environmental changes in the North Sea has resulted in a species shift in abundance from large pelagic species--mackerel and herring--to smaller, fast-growing, and less desirable (from an economic point of view) species, e.g., sand lance, sprat, and Norway pout (Hempel, 1978; Ursin, 1977). Other significant changes in the North Sea have been reported for the plankton populations (Robinson, 1970; Colebrook, 1972). During the past two decades a shift has been observed in species composition of the phytoplankton and zooplankton. The spring phytoplankton bloom has been delayed with the initiation later in spring now than in the 1950's. Also, rather than the large diatom cells dominating the spring bloom, smaller dinoflagellate cells predominate now. This shift from larger to smaller cells may have affected the species composition of the zooplankton favoring the development of the smaller copepod species. The causes for the long-term shifts in species composition are not known. Whether the changes are attributable to fishing pressure, cyclical or natural environmental fluctuations, reduction in the stock size of principal zooplankton-feeding fish (mackerel, herring), or the impact of pollutants remains an open question.

### The Georges Bank-Gulf of Maine-Middle Atlantic Bight Ecosystems

Off the northeast coast mackerel and herring populations have been reduced during the past decade. In fact, the entire biomass of economically valuable food fish has decreased over 50% in the Georges Bank-Gulf of Maine-Middle Atlantic Bight areas since 1958 (Clark and Brown, 1977). Much of the decrease is the result of heavy fishing pressure and to a lesser degree environmental changes. The effects of large-scale dumping of oil and other industrial and urban wastes may also have contributed to the decline. Unfortunately, the systematic physiological baseline data required to separate the various components of mortality-fishing, natural, and pollution induced--are not yet available.

Some evidence, however, is now available suggesting a marked increase in the abundance of larvae of the sand lance (Annodytes americanus) off the northeast coast. Whether this marks a shift in the species composition of the pelagic fish fauna from the dominance of mackerel and herring to a fast growing, smaller and less desirable species like the sand lance is not clear. Additional studies are underway to verify earlier findings, showing an increase of sand lance. In 1966 they constituted less than 20% of the spring larval ichthyoplankton community. Their densities increased to 85% in spring, 1977.

Environmental conditions off the Mid-Atlantic Bight have been the subject of an intensive study by the NMFS and NOAA/MESA program for several years. In 1976 a dramatic reduction of oxygen off the New Jersey coast resulted in mass mortalities of bivalve molluscs. The causes for the anoxic condition appear to be in part the result of unique hydrographic conditions (Armstrong, 1977). However, if a tanker had grounded in the busy shipping lanes in the vicinity of the mortality and released large amounts of oil, the ecological damage assessment would have become even more complex. It is likely that petroleum hydrocarbons would have been implicated as a source of the mortality. The scenario may not be too far from reality. As the multiple use of continental shelf resources grows, the complexities of the ecological interactions become more difficult to separate. Fortunately, sufficient "baseline" data were available to sort out the alternative possibilities for the mortalities, and offer a reasonable hydrographic explanation.

In summary, off the northeast coast the fish stocks are in a stressed condition. Much of the reduction in biomass is related to heavy fishing mortality. But, the impact of the increasing pollution of the area cannot be discounted as a contributing agent without further study.

### DISCUSSION

# Prognosis for the 1980's

The scientific literature on the effects of petroleum hydrocarbons is based largely on laboratory toxicological and bioassay studies. Exposures to petroleum fractions at levels 100 ppb can be lethal to a wide array of marine species ranging from protozoans to chordates (Craddock, 1977). The critical questions, as yet unanswered, are concerned with how to estimate damage to populations under <u>in situ</u> conditions. Analysis of sea water and tissues for petroleum hydrocarbon levels is difficult to separate from naturally occurring hydrocarbons in marine organisms, particularly at low levels. Analytical methods are expensive, requiring sophisticated equipment and highly trained personnel. While some progress has been made, it has not been of sufficient scope to provide definitive answers to key questions:

(1) How best can the effects of petroleum hydrocarbons on fish stocks and their environments (ecosystems) be assessed quantitatively?

(2) Are the alterations observed in the nearshore areas from the contamination of petroleum hydrocarbons reversible?

(3) Can we continue to input massive amounts of petroleum hydrocarbons into the ecosystem with little risk of ecological disaster?

These questions are not readily answered. The problems are important and they should be addressed not only in the context of oil pollution but they should be expanded to include the effects of other hazardous substances in marine waters.

We have not been treating the problem of petroleum hydrocarbon pollution adequately. Our scientific studies have been generally shortterm and not designed to answer the three questions. They have not been formulated, as yet in an urgent sense, stated as objectives, and programmed for solution. For questions 1 and 2, partial answers can be formulated. Some effort has been directed to the initiation of a balanced programmed program to quantitatively monitor population changes and physiological condition or "health" of the key marine populations on the continental shelf. With respect to question 2, perusal of the literature provides some insight to the solution. If the oil does not penetrate the sediment of a spill area, recovery can be measured in weeks or months. When the petroleum enters the sediments the recovery process can take years, or in the worst cases, no full recovery can be expected. Sediments in Raritan Bay and the New York Bight contain thousands of parts per million of long-chain petroleum hydrocarbons. In areas of chronic discharge, bivalve mollusc populations show high hydrocarbon levels initially. These are then reduced as the organisms develop resistance. Although the community may return to pre-spill species composition and densities it is likely that the tainted condition of the benthos, particularly bivalve molluscs, will preclude their use as a marketable product.

The answer to the third question is an enigma. The approach to the problem has been piecemeal. Responsibility for assessing ecosystem damage has been divided among several agencies (e.g., EPA, BLM, NOAA, DOT), then given minimal support. Legislative authority for getting on with the job may rest with NOAA in the Marine Protection Research and Sanctuaries Act of 1972 and the Fisheries Conservation and Management Act of 1976. More recent legislation now pending (Ocean Pollution Research and Monitoring Act S-1617) clarifies the problem, the responsibility, and provides the basis for the necessary budgetary support to mount a comprehensive program.

During the next decade the demand for oil will impact more directly on fisheries. Damage can be expected from both chronic and acute input of petroleum hydrocarbon and other toxic substances. The probability for greater input is heightened with the expanding development of continental shelf gas and oil reserves (e.g., pipeline ruptures, transport accidents, storage tank leakage, offloading seepage). A summary of oil spill events in the waters adjacent to the U. S. is given in Table 2. The present background levels of petroleum hydrocarbons may be sufficiently persistent to damage the more sensitive species of phytoplankton and fish eggs and larvae inhabiting the surface waters of the continental shelf.

The surface plankton community known collectively as "neuston" is most susceptible to petroleum contaminants. Significant amounts of tar balls persist in surface waters off the east coast of the United States. Larval bluefish, flounder, tuna, marlin and other important resource species have been collected in neuston nets contaminated with tar (Sherman et. al., 1974). The level of oil and tar contamination in neuston samples taken between Virginia and Cape Cod is low but persistent (0.05 mg/m to 1.04 mg/m in 1972-73). At least 30% of the samples collected from the area were contaminated. The percentage of samples and weight of the tar mass collected increased in the Gulf Stream and off the Bahamas (Table 3). More recently, qualitative estimates were made of particulate oil and tar in 332 samples collected from the Georges Bank Nantucket Shoals area. Of this number, 36% were contaminated with oil (Sherman and Busch, 1978). Tar clumps have been found in surface water throughout the Atlantic. Morris and Butler (1973) estimate the standing stock at 86,000 metric tons, with concentrations in the Sargasso Sea 3.6 times greater than the average weight of daytime zooplankton (9.5 gm/m<sup>2</sup> versus 2.6 gm/m<sup>2</sup>). Tar clumps constituted about 20% of the weight of neuston samples collected by them south of the Grand Banks. The effect of oil residues on neuston populations is not clear, and needs to be addressed.

### Long-Term Assessments

The grounding and breaking of the <u>Argo Merchant</u> and subsequent groundings of other oil tankers on the continental shelf are dramatically illustrative of specific events that are not predictable. For example, the Northeast Fisheries Center is frequently requested by responsible officials -- local, state and federal -- to assess the impact of major environmental incidents on the fishery resources of the northeast continental shelf. To deal with these incidents special studies are initiated to assess the impact on the environment and living resources. These efforts, however, are of limited duration and conducted with little information on the initial physiological condition of the living resources. Information on the baseline conditions or health of the stocks is inadequate. We are dealing with a complex system that requires a combination of short-term tactical observations that can be evaluated against a background of long-term baseline information on the condition and health of fish and shellfish stocks.

### Ocean Pulse

In order to effectively assess pollution damage an approach is needed that: (1) encompasses the coordination of the short-term assessment studies of various groups and agencies conducted in response to a pollution "event," (2) provides for regionally oriented long-term monitoring of ocean environments and populations, and (3) provides suitable information for interim or near-term policy guidance and decision making. Because the pollution "event" can occur at any site over the continental shelf, an integrated approach is being developed that couples in-depth physiological baseline studies (e.g., genetics, histopathology, biochemistry) at specific sites with long-term monitoring of changes in the abundance of the populations of fish and other key species in the

| Input                                                                            | Million<br>Metric Tons<br>per Annum | Percent<br>of<br>Total |
|----------------------------------------------------------------------------------|-------------------------------------|------------------------|
| Transportation<br>Tankers, dry docking, terminal<br>operation, bilges, accidents | 2.133                               | 35                     |
| Coastal refineries, municipal and industrial waste                               | 0.8                                 | 13                     |
| Offshore oil productions                                                         | 0.08                                | 01                     |
| River and urban runoff                                                           | 1.9                                 | 31                     |
| Atmospheric fallout                                                              | 0,6                                 | 10                     |
| Natural seeps                                                                    | 0.6                                 | 10                     |
| TOTAL                                                                            | 6.113                               | 100                    |

Table 1. Petroleum Hydrocarbons in the Ocean. Adapted from NAS, 1975.

Incidence of Oil spills in U.S. Navigable Waters Including Spills beyond the Contiguous Zone which Threatened the Contiguous Zone. From Project Development Plan, Office of Assistant Administrator for Research and Development, NOAA, March 1978. Table 2.

|      | Under  | 10,000 gal.   | 10-100 | ,000 gal.              | 100,00<br>1,000,1 | 0 -<br>000 gal. | >1,000 | ,000 gal.     |        | Tota1         |
|------|--------|---------------|--------|------------------------|-------------------|-----------------|--------|---------------|--------|---------------|
|      | Number | Volume (gal.) | Number | Volume (gal.)          | Number            | Volume (gal.)   | Number | Volume (gal.) | Number | Volume (gal.) |
| 1974 | 13,765 | 2.9 million   | 169    | <pre>1.7 million</pre> | 30                | 7.1 million     | 2      | 2.3 million   | 13,966 | l6.9 million  |
| 1975 | 10,067 | 2,2 million   | 94     | 2.5 million            | 16                | 4.8 million     | 4      | 5.0 million   | 10,141 | 14.4 million  |
| 1976 | 30,553 | 2.4 million   | 60     | 2.4 million            | 13                | 3.1 million     | 4      | 16.2 million  | 10,600 | 23.1 million  |

Table 3. Percent Occurrence, and Average Concentrations (mg/m<sup>2</sup>) of Tar by Areas in Summer 1972 (July-August 1972) and Winter 1973 (January-March 1973) during MARMAP Survey Operations. From NBS Spec. Publ. 409, December 1974.

| Survey | Region                      | No. of<br>Neuston<br>Tows | Percent<br>w/Tar | Concentration<br>mg/m <sup>2</sup> |
|--------|-----------------------------|---------------------------|------------------|------------------------------------|
| S      | Va-Cape Cod<br>(coastal)    | 29                        | 31               | 0.18                               |
| W      | VA-Cape Cod<br>(coastal)    | 29                        | 38               | 1.04                               |
| S      | Va-Cape Cod<br>(offshore)   | 52                        | 83               | 0.77                               |
| W      | Va-Cape Cod<br>(offshore)   | 51                        | 59               | 0.05                               |
| S      | N.CFlorida<br>(Gulf Stream) | 32                        | 78               | 0.23                               |
| W      | N.CFlorida<br>(Gulf Stream) | 48                        | 90               | 1.22                               |
| S      | N. Antilles &<br>Bahamas    | 39                        | 87               | 3.9                                |
| W      | N. Antilles &<br>Bahamas    | 47                        | 96               | 4.8                                |

(S-Summer & W-Winter)

LITERATURE CITED

- Armstrong, R. S. 1977. Climatic condition related to the occurrence of anoxia in the waters off New Jersey during the summer of 1976. Appendix I. Oxygen Depletion and Associated Environmental Disturbances in the Middle Atlantic Bight in 1976. Tech. Series Rep. No. 3, Northeast Fisheries Center, NMFS, Sandy Hook Laboratory, Highlands, N.J.
- Blumer, M., G. Souza, and J. Sass. 1970. Hydrocarbon pollution of edible shellfish by an oil spill. Mar. Biol. 5:195-202.
- Brandal, P. O., O. Grahl-Nielsen, T. Neppelberg, K. H. Palmork, K. Westrheim, and S. Wilhelmsen. 1976. Oil-tainting of fish, a laboratory test on salmon and saithe. ICES, C.M.1976/E:33:1-6.
- Clark, R. C., Jr., and J. S. Finley. 1977. Effects of oil spills in arctic and subarctic environments, pp. 411-491. <u>In</u>: Donald Malins, ed. Effects of Petroleum on Arctic and Subarctic Marine Environments and Organisms, Vol II, Biological Effects, Academic Press, N. Y.
- Clark, S. H. and B. E. Brown. 1977. Changes of biomass of finfishes and squids from the Gulf of Maine to Cape Hatteras, 1963-74, as determined from research vessel survey data. Fish. Bull. 75(1):1-21.
- Colebrook, J. M. 1972. Changes in the distribution and abundance of zooplankton in the North Sea 1948-1969. Symp. Zool. Soc. Lond., Vol 29:203-212.
- Conover, R. J. 1971. Some relationships between zooplankton and Bunker C oil in Chedabucto Bay following the wreck of the ship <u>Arrow</u>. J. Fish. Res. Board Can. 28:1327-1330.
- Craddock, D. R. 1977. Acute toxic effects of petroleum on arctic and subarctic marine organisms, pp. 1-93. <u>In</u>: Donald Malins, ed. Effects of Petroleum on Arctic and Subarctic Marine Environments and Organisms, Vol II, Biological Effects, Academic Press, N. Y.
- Dow, R. L. and J. W. Hurst, Jr. 1975. The ecological, chemical, and histopathological evaluation of an oil spill site, Part I. Ecological Studies. Mar. Pollut. Bull. 6:164-6.
- Grahl-Nielsen, O., T. Neppelberg, K. H. Palmork, K. Westrheim, and S. Wilhelmsen. 1976. The <u>Drupa</u> oil spill, investigation concerning oil, water, and fish. ICES, C.M.1976/E:34:1-18.
- Hempel, G. (Ed.). 1978. Symposium on the changes in the North Sea fish stocks and their causes. ICES Rapports et Proces-Verbaux. In press.

- Jeffries, H.P. and W.C. Johnson, II. 1975. Petroleum, temperature, and toxicants: Examples of suspected responses by plankton and benthos on the Continental Shelf, pp. 96-108. In: Bernard Manowitz, ed. Effects of Energy-Related Activities on the Atlantic Continental Shelf.
- Johannessen, K.I. 1976. Effects of seawater extract of EKOFISK oil on hatching success of Barents Sea capelin. ICES, C.M.1976/E:29:1-12.
- Kühnhold, W.W. 1969. The influence of water-soluble constituents of crude oils and crude oil fractions on the ontogenetic development of herring fry. Ber. der Deut. Wiss. Kommn. Meeresforsch. 20:165-171.
- Kühnhold, W.W. 1974. Investigations on the toxicity of seawater-extracts of three crude oils on eggs of cod (*Gadus morhua* L.), Ber. der Deut. Wiss. Kommn. Meeresforsch. 23:165-180.
- Kühnhold, W.W. 1978. Effects of the water-soluble fraction of a Venezuelan heavy fuel oil (No. 6) on cod eggs and larvae. Symposium: In the Wake of the <u>Argo Merchant</u>. Center for Ocean Management Studies, Univ. of Rhode Island. (In press).
- Lee, R.F. and M. Takahashi. 1976. The fate and effects of petroleum in controlled ecosystem enclosures. <u>In</u>: Petroleum Hydrocarbons in the Marine Environment. Rapp. P-V Reun. Cons. Int. Explor. Mer No. G5. (In press).
- Longwell, A.C. 1978. Field and laboratory measurement of stress responses at the chromosome and cell levels in planktonic fish eggs and the oil problem. Symposium: In the Wake of the <u>Argo Merchant</u>. Center for Ocean Management Studies, Univ. of Rhode Island. (In press).
- Mironov, O.G. 1968. Hydrocarbon pollution of the sea and its influence on marine organisms. Helgol. Wiss. Meeresunters. 17:335-339.
- Mironov, O.G. 1969. The effect of oil pollution upon some representatives of the Black Sea zooplankton. Zoologicheskii Zhurnal 48(7):980-984 (English Translation).
- Morris, B.F. and J.N. Butler. 1973. Petroleum residues in the Sargasso Sea and on Bermuda beaches. Proceedings of a Joint Conference on Prevention and Control of Oil Spills. March 1973, Washington, D.C.
- National Academy of Sciences. 1975. Petroleum in the marine environment. Washington, D.C. Natl. Acad. Sci. 107 p.

- Robinson, G. A. 1970. Continuous plankton records: variation in the seasonal cycle of phytoplankton in the North Atlantic. Bull. Mar. Ecol. Vol 6:333-345.
- Sanders, H. L. 1977. The West Falmouth spill--Florida. Oceanus. Vol 20(4):15-24.
- Sherman, K., J. B. Colton, R. L. Dryfoos, K. D. Knapp, B. S. Kinnear. 1974. Distribution of tar balls and neuston sampling in the Gulf Stream System. NBS. Spec. Publ. 409. Marine Pollution Monitoring (petroleum) Proceedings of a Symposium and Workshop held at NBS Gaithersburg, Maryland, May 13-17, 1974.
- Sherman, K. and D. Busch. 1978. The Argo Merchant oil spill and the fisheries. Symposim: In the Wake of the Argo Merchant. Center for Ocean Management Studies, Univ. of Rhode Island. (In press).
- Sindermann, C. J. 1978. Effects of industrial contaminants on fish and shellfish. Part 2: Petroleum effects. Manuscript, NMFS Sandy Hook Laboratory, Highlands, N. J. 07732.
- Steele, J. H. and B. W. Frost. 1977. The structure of plankton communities Phil. Trans. of the Royal Soc. London. B. Biol. Sci. V280, pp. 485-534.
- Struhsaker, J. W., M. B. Eldridge, and T. Echeverria. 1974. Effects of benzene (a water-soluble component of crude oil) on eggs and larvae of Pacific herring and northern anchovy, pp. 253-84. <u>In</u>: J. F. Vernberg and W. B. Vernberg, eds. Pollution and Physiology of Marine Organisms, Academic Press, N. Y.
- Thomas, M. L. H. 1973. Effects of Bunker C oil on intertidal and lagoonal biota in Chedabucto Bay, Nova Scotia. J. Fish. Res. Board Can. 30:83-90.
- Ursin, E. 1977. Multispecies fish stock assessment for the North Sea. ICES Demersal Fish Comm. F:42 Annual Meeting 1977:19 p.
- Vandermeulen, J. H. 1977. The Chedabucto Bay spill--Arrow, 1970. Oceanus. Vol. 20(4):31-39.